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0 Prologue

Example 0.0.1. Let z € C, $(z) > 0. Let ¢ = €™ and define Ramanujan’s tau

function
Alz)=q- [J-qgH*.
neN

This is one of the simplest examples of a modular form. Note that we can "multiply
out” the product above which leads us to

for some integers 7(n).
Facts 0.0.2.
(1) Known to Weierstrass, 1850:

A(z) =212 A <_1>

z

(2) Ramanujan proved in 1916 that the integers 7(n) satisfy the equation

T(n) = Zd“ mod 691.

din

(3) Ramanujan also conjectured 7(nm) = 7(n)7(m) for n, m coprime. This was proved
by Mordell in 1917.

(4) In 1972 Swinnerton-Dyer proved 7(n) satisfies congruences like (2) modulo 2, 3, 5,
7, 23 and 691 but no other primes.

(5) Ramanujan conjectured in 1916 for p prime holds |7(p)| < 2 p'*/2. This was proved
in 1974 by Deligne.

(6) The quantity
7(p)
oplL/2

is distributed in the interval [—1, 1] with density function proportional to /1 — z2.
This was conjectured by Sato and Tate (1960s) and proved by Barnet-Lamb, Ger-

aghty, Harris and Taylor in 2009 using Bau Chau Ngo’s Fundamental Lemma which
got Ngo the 2010 Fields Medal.

€ [-1,1]



Example 0.0.3. We now consider another modular form

f) =q]J—q")’@—g")

=q—2¢" —*+2¢" +¢" +2¢° + ...

o0

= Z a(n)q" ! with a(n) € N

n=1
We will later prove the following results:
Theorem.
1. We have a(mn) = a(m)(n) for all m,n > 1 with (m,n) = 1.
2. We have |a(p)| < 2,/p for all primes p.

It turns out that this modular form is closely related to the elliptic curve
E:Y?+Y =X%-X*-10X — 20.

For p prime, denote by N(p) the number of points on the elliptic curve in F,,. It is easy
to see heuristically tat N(p) ~ p.

Theorem. (Hasse) We have
p = N(p)| < 2v/p.

The theory of modular forms allows one to prove that the elliptic curve E and the
modular form f ‘correspond’ to each other in the following sense:

Theorem. For all primes p, we have

a(p) =p— N(p).

In particular, using the properties of the modular form f, we can easily calculate the
quantity N(p) for all p, so f ‘knows’ about the behaviour of the elliptic curve over F,,.
We say that the elliptic curve F is modular. It is generally not too difficult to attach
an elliptic curve to a modular form (this is called ”Eichler—Shimura”); however, it is
very difficult indeed to reverse this process, and this is the basis of Andrew Wiles’ work
on Fermat’s Last Theorem. The proof of this result was later completed by Breuil—-
Conrad-Diamond—Taylor. I will talk a bit more about this when we discuss L-functions
of modular forms.



1 The modular group

1.1 The upper half-plane

Definition 1.1.1. Let # = {z € C: ¥(2) > 0} the upper half-plane.
Proposition 1.1.2. The special linear group SLy(R) = {A € GLy(R): det(A4) =1}

acts on H via
a b Z_az+b
c d]7  cz+d

Proof. For z € H is §(2z) > 0 and either ¢ or d is nonzero, so cz + d # 0. Moreover

o [az+b _ 1 N Dz 4 d
\9<02+d> i dp S ((az+b)(cz+4d)).
Say z = x + 1y for x,y € R.
CZZ"‘b 1 2 .
Q) (cz " d) - o1 dP %(Saw + b)(cxj— d) + acy® +i (ad — be) y)
R =1
L 3(») > 0
= —7: 3z
lcz + d|?
Therefore ‘Cfig € H for any z € H, (¢}) € SLy(R).
Also it is easy to check that (§9)z = z and A(Bz) = (AB)z for any z € H and for
any A, B € SLy(R). Thus SLy(R) acts on H. O

Note 1.1.3. The matrix (' °;) € SLy(R) acts trivially on H, so the action of SLy(RR)
on H factors through the quotient PSLy(R) = SLy(R)/(£1), the projective special
linear group.

Definition 1.1.4. The automorphy factor is the function
7 SLQ(R) X H — C,

a b
(9,2) —»cz+d forg(c d)

Proposition 1.1.5. For any k € Z, we can define a right action of SLo(R) on the set
of holomorphic functions H — C given by

(fleg) (z) :== (g, 2)7" f(g2)

where f: H — C holomorphic, g = (‘; fl) € SLy(R). We will call this the weight k
action.



Proof. Firstly we need to show that f|rg is a well-defined holomorphic function # — C.
But this is obvious since cz + d # 0 and gz € H for all z € H. Clearly also the
equation f|x1 = f holds. Therefore it remains to show (f|rg)|xh = f|x(gh) for arbitrary
g, h € SLy(R). The left hand side of the equation can be rewritten as

(flrg)leh = 5(h, 2)™ ((flrg)(h2))
= j(h,2)*j(g,h2) " f(g(h2))
and the right hand side results in

fli(gh) = j(gh, 2) ™ f((gh)z).

We already know (gh)z = g(hz). So it remains to show j(gh, z) = j(h, 2)j(g, hz). This
is the so called cocycle relation and can be checked easily. O]

1.2 The modular group

Definition 1.2.1. The modular group is the group

SLQ(Z> - {A — (Cé Z) ; a, b7 C,d € Z7 det(A> - ]‘} :

The projective modular group is PSLy(Z) = SLy(Z)/(£1).
Theorem 1.2.2.  (a) The group SLy(Z) is generated by S = (9 ') and T = ({1).
(b) Every orbit of SLa(7Z) acting on H contains a point of the set D defined by

1 1

D:{ZG’H: —Egﬂ(z)gﬁ and|z|21}.

(c) If z € D and gz € D for some g € SLy(Z), then either g = £1 and gz = z or z
lies on the boundary of D.

(d) The stabilizer of z € H in PSLy(Z) is trivial unless z is in the orbit of i or in the
orbit of p = e*m/3.

Proof. We will prove all of these statements in 4 steps using a very elegant argument of
Serre. Let G = SLy(Z) and G' = (S,T) < G.

Step 1. Every G’ orbit in H contains a point of D.

Proof of Step 1. Let z € H. Since |cz+d| > |c S(2)] and |cz+d| > |¢ R(z)+d| there exist
only finitely many (¢, d) € Z* such that |cz+d| < 1. Recall S((254)z) = |cz+d| 72 S(2).
This implies there are only finitely many g € G’ such that 3(gz) > 3(z). So the G
orbit of z contains a point of maximal imaginary part. Let this point be z.

We can assume R(z) € [—3, 1] since Tz = z + 1. Moreover I(Sz) = |z[72 (z). But
z is a point of maximal imaginary part in the orbit of G’, so we get |2|72 3(z) < $(2)
implying |z| > 1. Thus z € D. Clearly this proves part (b) of the theorem. O



Step 2. If z € D and gz € D, where g € GG, then one of the following holds:
1. g==Id
2. g==+Sand |z| =1
3. g=+T and R(z) = —3, or g =T ' and R(z) =1

4. g=+ST =+ ) or g =TS = (P ) org=+5T7"1S =£(1 %)
and z = p

ot

.g=4TS5 = j:(l_ol) or g =+8T1 = :l:(?j) or g ==£8TS = :l:(jl _01) and
z=p+1

Proof of Step 2. Let z € D and g = (ZZ) € G such that 2/ = gz € D. Being free
to replace g by ¢! and z by 2’ we can assume that J(z') > $(z). Again recalling
S(g2) = |ez +d| 72 3(z) we gain |cz + d| < 1. Furthermore we have

3
2 +d] 2 | 3(2) 2 Id 3(0) = el

Thus |¢] <2/v3<2. Asc€ Z we get c=0or c = £1.

e Let c=0. Since 1 > |cz+d| = |d| we have d =0 ord =+1. Butc=d =01is
impossible. So d = +1 and hence a = 1. Therefore g = (%' ) is the translation
by b. But since

11
R(z), N -, =
() Rgz) € -5 3]
this implies that b = 0 or b = £1. So either ¢ = +Id (case 1) or ¢ = £7T and
R(z) = —3 or g=4T"' and R(z) = 1.

e Let ¢ = 1. Assuming |d| > 2 leads to the following contradiction:

1>z +d|=|z+d| > |d —R(z) > |d — = >

DN | —
DO W

Thus we have d =0 or d = £1.

Let d = 0. Then 1 > |cz + d| = |z|. On the other hand |z| > 1 as z € D and
therefore |z| =1 (cases 2, 4 or 5 — exercise sheet 1).

Let d = 1. Then 1 > |z + 1|. This is only possible for z € D if z = p (exercise).
Since a — b = 1, we deduce that wither (a,b) = (1,0) or (a,b) = (0,—1) (case 4).

Analogue d = —1 implies z = p + 1 (case 5).
e The case ¢ = —1 is analogous to the case ¢ = 1.

Since there are no further cases this shows Step 2 (it remains to check the matrices in
case 4 and 5 — see exercise sheet 1) and therefore part (c) of the theorem. O



Step 3. Let z € D such that the stabilizer G, of z is not +Id. Then z =4, 2z = p or
z=p+ 1

Proof of Step 3. This follows directly from Step 2 by checking gz = z for all possible
g’s. Step 3 proves part (d) of the theorem. ]

Step 4. It remains to show that SLy(Z) is generated by S and 7.

Proof of Step 4. Let g € GG and let z be an arbitrary point of the interior of D. Then
gz € H and by Step 1 exists ¢’ € G’ such that ¢'(gz) € D. Moreover Step 2 implies that
either ¢'g € {£1d} or z is on the boundary of D which is by assumption not the case.
Thus either ¢'g = Id or ¢'g = —Id. Since S? = —Id € G’, we deduce that g € G, so
SLy(Z) is generated by S and 7. This proves part (a) of the theorem. O

Therefore the theorem is proved. O

Remark 1.2.3. We have seen in the proof of Theorem 1.2.2 that SLy(Z) is generated
by the elements S and T'. These satisfy the relations

St=1d (ST)° =52

and one can show that these generate all the relations, i.e. that
(S,T|S* S*(ST)?)

is a presentation of the group SLy(Z).

Remark 1.2.4. The set D is called the fundamental domain. The figure below
represents D itself and the transforms of D by some group elements of SLy(Z). Part (c)
of the theorem shows that two sets gD and ¢’D where g,¢g" € SLy(Z) are either equal
(if ¢ = +g) or only intersect along their edges. Furthermore part (a) implies that H is
covered by the sets {gD: g € SLy(Z)}: they form a tesselation of H.

ST-'S

+1



1.3 Modular forms and modular functions

Definition 1.3.1. A weakly modular function of weight k£ and level 1 is a mero-
morphic function H — C such that f|ya = f for all & € SLy(Z), or equivalent

P = 1)

for all z € H and for all (24) € SLy(Z).

Note 1.3.2. Since SLy(Z) is generated by the matrices S and T, it is sufficient to check
invariance under these two matrices, i.e. that

flz+1) = f(z) and f(=1/2) = 2" f(2)
for all z € H.

Lemma 1.3.3. There are no nonzero weakly modular functions of odd weight.

Proof. Let k be odd and let f be a weakly modular function of weight k. As shown
in (2) we have f(z) = f(z+ 1) for all z € H. Moreover we get f(z) = —f(z + 1) for
all z € H, since fli( o' Z1) = —f(-+1). So f(z) = —f(2) and thus f(z) = 0 for all
z e H. O

Define the function

q: H—C,
z > exp(2miz).

Note 1.3.4. Now let f be weakly periodic of weight k. Then f is periodic with period
1, so it can be written in the form

f(z) = flexp(2miz)),
where f is a meromorphic function on the punctured unit disk
D*={qeC:0<|q <1}.

Note 1.3.5. The function f is defined by

Fla)= f (logq) |

27

Observe that the logarithm is multi-valued, but choosing a different value of the logar-

ithm is the same as adding an integer to 1‘2)%. The periodicity of f hence implies that

f(g) does not depend on the chosen value of the logarithm.



Note 1.3.6. Any weakly modular function can be written as

[e.9]

f(Z) = Z anq"

n=—oo

for some a, € C where ¢ = ¢*™*; we call this the g-expansion of f. This is just the

Laurent series of f around ¢ = 0, which converges for 0 < |¢q| < ¢ for ¢ sufficiently small
(< S(z) > 0)

Definition 1.3.7.
e We say that f is meromorphic at oo if a,, = 0 for n < —N and some N € N.

e We say that f is holomorphic at co if a, = 0 for n < 0. In this case, we define the
value of f at oo to be f(00) = f(0) = ay.

Definition 1.3.8. Let f be a weakly modular function of weight k and level 1.

1. If f is meromorphic on H U {cc} we say f is a modular function (of weight k
and level 1).

2. If f is holomorphic on H U {co} we say f is a modular form (of weight k£ and
level 1).

3. If f is holomorphic on H U {oo} and f(oco) = 0 we say f is a cuspidal modular
form or cusp form.

Note 1.3.9. If f and g are modular forms (resp. modular functions) of level 1 and
weights k and ¢, then the product fg is a modular form (resp. modular function) of
weight k& + /.

1.4 Eisenstein series

Definition 1.4.1. Let k£ > 4 even. Define the Eisenstein series of weight £k to be
the function G: H — C given by

)= Y (11)

-
(m,n)€Z2\{0} (mz T n)
Recall the following result from complex analysis:

Proposition 1.4.2. Let U be an open subset of C, and let (f,), > 0 be a sequence of
holomorphic functions on U that converges uniformly on compact subsets of U. Then
the limit function U — C is holomorphic.

10



Lemma 1.4.3. The series defining Gi(z) converges absolutely and uniformly on subsets
of H of the form
Rys=A{z+iy: [z] <7 y= s}

It hence converges to a holomorphic function on H.

Proof. Let z = x + iy € R, ;. We have
|mz +n|? = (mx +n)? +m?y* > (mx +n)? + m?s>.

For fixed m and n, we distinguish the cases |n| < 2r|m| and |n| > 2r|m|. In the first
case, we have

|mz +nl? > m?s* > im2 + 8—2n2 > min 5—2, i - (m? +n?).
= =2 20272 2 812

In the second case, the triangle inequality implies

2
1
Imz 4+ nl* > (|mx| — |n])* + m?s* > (@) +m?s* > min {1,52} - (m? +n?).

Combining both cases and putting

N L
c=ming —, 5,8
2’87’2,4’ ?

we get the inequality
imz +n| > 2(m? +n*)Y? forall m,n € Z, 2 € R,.,.

Hence for all z € R, 5, we have

1 1
Gi(2) < k2 Z (m2 + n2)k/2°
(m,n)#(0,0)

We rearrange the sum by grouping together, for each fixed j = 1,2, 3, ..., all pairs (m,n)
with max{|m|, |n|} = j. We note that for each j there are 8; such pairs (m,n), each of
which satisfies

j2 < m? + n2.
Hence
1 =8 8 & 1
Gr(2)| < =% Y —=—%5 > —,

which is finite and independent of z € R, g, so G (z) converges absolutely and uniformly
on R, . Since every compact subset of H is contained in some R, ,, this finishes the
proof by Proposition 1.4.2. O

11



Remark 1.4.4. This proof clearly fails for £ = 2. One can show that for £ = 2, the
series (1.1) is conditionally but not absolutely convergent. We will come back to this
issue later in the course.

Proposition 1.4.5. For every even integer k > 4, the function Gy is a modular form
of weight k and level 1. The g-expansion of Gy is given by

Gule) =2 ¢+ 20 Zakl

where ((k) = >_°° . X (the Riemann zeta function) and oy, (n) = > djn dt.

n=1 nk

Proof. One easily checks that Gi(z + 1) = Gi(z). Moreover, we have

1 1
G <"> = >
“ (m,n)€Z2\{0} (m(=3) +n)
1
=2 )
=z -
_ %
(m,n)eZ2\{0} ( m+ nz)
= 2F Gr(2).

Hence Gi|pS = Gy and Gi|xT = Gy, so Gglra = Gy, for all a € SLy(Z) by Theorem
1.2.2 (a). Thus Gy is a weakly modular function of weight k& and level 1.
It remains to show that G is holomorphic at co. Therefore we will determine the

g-expansion of Gy. Consider the formula Y _, —— = 7 - cot(7z). Thus we obtain
1 . eQm’z + 1 2
%ZjLn—ﬂmot(wz)—m(m) 2ﬂ(1+—1)—z7r—2mnzoq7

2miz

where ¢ = ™. Differentiating (k — 1) times with respect to z, and using that % =

27m'qa%, leads to

—(k—=1)! ok
Z (z+n)k T okl ( 2WZZQ>

ne”

= —2i Z(zm‘n)’an
= —(2mi)* Z kg
n=1
(We are using here that k is even; for £ odd we get an additional — sign.)

Hence we get
. 1 27TZ k 1 27rznz

neL

12



Now we can split up the original sum of the function G into two parts, one where
m = 0 and one where m # 0. Afterwards we will simplify both parts using symmetry
(remember again that k is even) of the sums and the above formula:

CISEID DEETE DY) D s

neZ\{O} meZ\{o} neZ
=2 Z 2 Z Z (mz+n)
n:l m=1 neZ

k)+2Ztk(mz)
:2C(k>+ Z E{: Z k—1 p2minmz
= 2¢(k) k )) Zan Lgm

m=1 n=1

From there we obtain the proposed g-expansion by resorting the last sum:

Gu(z) = 20 (k) 27”| ZZd’f Ly

=1 d|l
——
or—1(1)
And since G}, has a g-expansion without any negative powers of ¢, GG} is holomorphic at
00. Thus G}, is indeed a modular form. O

Definition 1.4.6. The Bernoulli numbers are the rational numbers By, for £k > 0,

defined by the equation

o

—exp(j) — %tk e Qi)

Remark 1.4.7. The Bernoulli numbers are of great importance in mathematics. Barry
Mazur once said: “When a Bernoulli number sneezes, the tremors can be felt in all of
mathematics.”

Lemma 1.4.8. We have
B #0 & k=1 ork is even.

Proof. Exercise sheet 2. O]
Example 1.4.9. The first few non-zero Bernoulli numbers
1 1 1 1
By = Bi=—, By=-, By=—-, DBsg=—
0 07 1 92 ) 2 6 ) 4 3 3 6 49 )
1 5 691

By = ——. Bjp= — -
8 300 0T e TV 2730

13



Lemma 1.4.10. If k > 2 is an even integer, then

(k) = - E70 B

Proof. Exercise sheet 2. m

Definition 1.4.11. Let k£ > 4 be even. The normalised Eisenstein series of weight k
is given by

Eu(z) = %%)Gk(z) _ 1 %]Z ; o1 (n)g"

1.5 The valence formula

Definition 1.5.1. Let f # 0 be a meromorphic function H — C and let P € H. The
unique integer n such that (z— P)~" f(z) is holomorphic and non-vanishing at P is called
the order of f at P and denoted by vp(f). We say f has a zero of order n at P if
n is positive, and f has a pole of order n at P if n is negative.

Definition 1.5.2. Consider the Laurent expansion of f around P

f(z) = Z cn(z — P)".

n>ng

Then the residue of f at P is Resp(f) =c_; € C.

Lemma 1.5.3. If f is meromorphic around a point P, then

Resp(f/f') = vp(f).
Proof. Exercise. O
We recall without proof the following results from complex analysis:

Theorem 1.5.4. (Cauchy’s integral formula) Let g be a holomorphic function on an
open subset U C C and let C be a contour in U. Then for each P € U, we have

/C%dz = 2mi - g(P).

Corollary 1.5.5. Let C(P,r,«) be an arc of a circle of radius v and angle o around a
point P. If g is holomorphic at P, then

. 9(2) ‘
| “—dz = ot - qg(P).
Tg% C(P,r,a) z—P : ! g( )

(Here, we integrate counterclockwise.)

14



The following result relates the contour integral of the logarithmic derivative of f to
the orders of f at the interior points:

Theorem 1.5.6. (Argument principle) Let f be a meromorphic function on an open
subset U C C, and let C' be a contour in U not passing through any zeros or poles of f.

Then 72
/Of(z>dz:2m' Z vp(f)-

Peint(C)

Note 1.5.7. By Lemma 1.5.3, we have

/Cf/((;)dz:Qm Z Resp(f'/f). (1.2)

f Peint(C)

Corollary 1.5.8. Let C(P,r,«) be an arc of a circle of radius r and angle o around a
point P. If f is meromorphic at P, then

lim '(z)

r—0 C(Pyr,«) f(Z)

dz = ai - vp(f).

Now assume that f is a weakly modular funktion (of weight & and level 1).

Remark 1.5.9. Since f|p,a = f for all @ € SLy(Z), we have v,p(f) = v,(f). Hence
vp(f) is well-defined for P being a SLy(Z) orbit in H.
Moreover, if f is meromorphic at oo, we can define the order of f at oo by

Voo (f) = wo(f).

The following theorem is fundamental for studying the spaces of modular forms:

Theorem 1.5.10. (The valence formula) Let f # 0 be a modularfunction of weight k
and level 1. Then f has finitely many SLy(7Z)-orbits of zeros and poles in H, and

)+ 5ul) 4 50D + Y vplf) = 15,

(1.3)
2 3 Pew

where p = e>™/3 and W is the set of all SLy(Z)-orbits in H except the orbits of i and p.

Proof. Recall the fundamental domain from 1.2.2 and let C be the contour as shown in
the figure below. Here $(A) = S(E) = R (we will later let R — 400) and the three
small circles have radius r. We assume that R is sufficiently large and r sufficiently small
that the interior of C contains all the zeros and poles of f except those at i, p, p+ 1 and
00.

Simplifying assumption: We assume for simplicity f has no zeros or poles on the
boundary of the fundamental domain, except possibly at i and p. (In the case where it
does contain zeros or poles of f, the contour has to be modified using additional small
arcs going around these zeros or poles in the counterclockwise direction.)

We will now calculate | c ];,((ZZ))
wards.

dz in two different ways and compose the results after-

15



Q

N

(1) Computing the integral using Theorem 1.5.6, we get

/C{;léj))dzzm > el =2mi Yy vp(f),

Pcinterior(C) prPeWw

where W is the set described in the stated theorem. The last equality is satisfied
by the simplifying assumption, so the interior of the fundamental domain contains
exactly one representative of every pole or zero SLy(Z)-orbit of H.

(2) Secondly, we estimate the integral by splitting up the contour in 8 parts. Let C;
be the part from E to A, Cy be the part from A to B, and so on, such that in the
end Cg is the part from D’ to E.

(i) Note that since f is a modular function, we have f(z) = f(z+1). Hence also
f'(z) = f'(2z+ 1), and we have

P (S P (O
W T LT / Ok
Mdz—l— &dz:().

e f(2) cs f(2)

(i) Now we consider C; and change the variable by ¢(z) = €*™#. This maps C; to
a clockwise oriented circle around the origin with radius e~2™R_ Furthermore
we have f(z) = f(q(2)), thus f'(2) = f'(q¢(2)) ¢'(z) and since f is a modular

16



function, f is meromorphic at 0. Therefore

FE), [ P,
o f(2) a  flea2)
_ ()
aer) f(a)
£
= —2mi Resy L
f
= —2mi vo(f)
= =270 o (f).
(iii) Cs is half of a circle around i. We deduce from Corollary 1.5.8 that
/
1
lim f =—= 27rz v (f)-
r—0
Similarly we get
. ffz), 1, .
}E}% ) dz = ~5 2mi v,(f)
: f'(z) L, . L, .
}ﬂl_I)I(lJ 70 dz = ~5 2mi v, (f) = 5 2mi v, (f).
(iv) So it remains to study Cy and Cg. Therefore consider u(z) = —%. This maps

Cs to —C4 and we have f(z) = z7%f(u(z)), hence
f(2) = =kz7" 1 f(u(2)) + 278 f (=) (2).

So
f'z), [ =k f'(u(2))u'(2) 3
@ﬂ@“‘c4zd+@ oy
_ 2mik f'(u) 5
D +/ )
ik [ S,
12 ce f(u)
and thus

& z ') z =2mi—
B TE R W TE Rl )

Composing (i) to (iv) ylelds

|56

Combining this with the result in (1) gives us exactly the proposed formula. ]

I, — o (ﬁ - ;vp(f) - %vz-(f) - voo(f)> -

17



1.6 Applications to modular forms

The valence formula provides some interesting consequences to spaces of modular forms
which we will investigate below.

Definition 1.6.1. Let M, be the set of all modular forms of weight k& and level 1 and
let S be the set of all cusp forms of weight k and level 1.

Remark 1.6.2. It can be easily checked that these are both vector spaces over C.
Lemma 1.6.3.

(a) My = {0} fork <0 and k = 2.

(b) Sk, = {0} for k < 12.

(c) My is the set of all constant functions H — C and thus isomorphic to C.

Proof. (a) Let f € My, f #0. Then v,(f) > 0 for all z € HU{oo}. So by the valence
formula we get £ > 0. Moreover a sum of non-negative integer multiples of % and
% can’t equal %. Thus k # 2.

(b) Let f € Sk, f#0. Then vy (f) > 1, hence k > 12 by valence formula.

(c) Let f € My. Then the constant function g := f(oc0) is also in My, so f — g € Sy
and therefore f = g since Sy = {0}.
[l

Definition 1.6.4. Define
_ B} - ER

1728

Remark 1.6.5. In the prologue of this lecture we defined A = ¢ - [], (1 — ¢")**. We
will prove later that this is indeed the same A as the one in Definition 1.6.4.

Note 1.6.6. Since F; and Eg are modular forms of weight 4 and 6, respectively, A is
a modular form of weight 12. Since the g-expansion has zero constant coefficient, it is
indeed a cusp form.

Lemma 1.6.7. The modular form A has a simple zero at oo and no other zeros.

Proof. Using the known g-expansions of F, and FEg, one can compute the g-expansion
of A as

A = q —24¢% + 252¢° — 1472¢* + 4830¢° — 6048¢° — 16744 + . . .,

so A has a simple zero at co. Now since A is a modular form, all the quantities v,(A)
occurring in Theorem 1.5.10 are non-negative, so the only way to get equality is if there
are no zeros apart from the one at oco. O

18



Proposition 1.6.8. Si5 is one-dimensional over C and spanned by A.

Proof. Let f € Si5 and define a function g by

o) = 1) = F A

This function is well-defined since A does not vanish on H, so A(7) # 0. Clearly g € Sio
and ¢(7) = 0. Using the valence formula yields
1

Voo(9) + 50il9) + %vp(g) + ;va(g) =1.

But this is a contradiction since vy (g) > 1 and v;(g) > 1. Therefore g has to be zero

and 1)
NG

AecC-A.

Corollary 1.6.9.

1. For all k € Z, the map
My = Sky12, f= f-A

18 an isomorphism.
2. For k > 4 we have My = S, & (C - Ey).

Proof. The first statement is trivial for & < 0 since then M} = Si;112 = {0} by Lemma
1.6.3 (a), (b). Solet k > 0. As A is non-vanishing the given map is clearly an injection.
Now let g € Spy12. Then £ is weakly modular of weight (k + 12) — 12 = k and
holomorphic on H since A is non-vanishing. Furthermore v,,(g) > 1 by assumption, so

v (X)) = 0el9) = v(8) = vaclg) ~ 1 20

So £ € M. Therefore the given map is also onto, thus bijectiv.

For the second part of the corollary we just have to note that Sy is the kernel of the
linear map M, — C, f+— f(oc0). Thus we have dim(My/Sk) < 1. On the other hand
we know that Ej € My, \ Sk since Ei(o0) # 0. So My, = Sy @ (C Ey). O

Theorem 1.6.10.
(a) The space My is finite dimensional over C for all k € Z.

(b) Let k >0 even. Then

1+ |£], k#2 mod 12,

dim(Mk):{Lﬁjy k=2 mod 12.

Otherwise My = {0}.
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(c) A basis for My, is given by {ESEL: a,b € Ny, 4a + 6b = k}.

Proof.  (a) This is a consequence of part (b).

(b)

20

We will prove this by induction on k. First of all note that the statement is clear
for odd k since there aren’t any nonzero weakly modular functions of odd weight.
Moreover we already know that dim(M,) = 1, dim(Ms) = 0 and dim(My) = 0
for k < 0 by Lemma 1.6.3 (a) and (c). In addition we have dim(Mj) = 1 for
k =4,...,10 since dim(M}) = dim(Sk) + 1 by Corollary 1.6.9 and S, = {0} for
these k’s by Lemma 1.6.3 (b). Hence the statement is true for k£ =0, ..., 10.

Let now k£ > 12. Then

since dim(Sy) = dim(Mj_12) by Corollary 1.6.9. So the statement is true for all k
by induction in steps of 12.

We will use again induction to prove the statement. Note that there is nothing to
show for odd k, k < 0 and k = 2 since in these cases My = {0}. The case k =0
is also trivial because M, is the set of all constant functions, hence generated by
1= E9ED.

Let now k > 4 be even. Obviously there is always a pair (a, ) such that a,b € Z>
and 4a+6b = k. Pick such a pair. Let f € Mj. Then f can be written in the form

f=XNE{Eg+g

for some A\ € C and g € Sy since the modular form E$EY is in M), and does not
vanish at infinity. So there is an h € Mj_15 such that g = h - A by corollary 1.6.9
and by induction we may assume h to be a linear combination of EjE; where
r,s € Z>p and 4r + 6s = k — 12. Hence

3 m2
hoA—p. (EizEe
1726

is a linear combination of Ejt*E§ and E}ES™? and since
Ar+3)+6s=4r+6(s+2) ==k

the function h is a linear combination of E}E{ with 4p + 6¢ = k. So the linear
span of these functions contains g and hence also f. Therefore

My, = span{E{EL: a,b € Ny, 4a + 6b = k}.
To show that the given set is indeed a basis of M, it suffices to check that
[{(a,b) € Z%,: 4a + 6b = k}| = dim(M,,).

This can again be easily seen by induction in steps of 12 (exercise).



Example 1.6.11. For the first few values of k£, the dimensions of M} and Sy are given

by
0 1 0
2 0 0
4 1 0
6 1 0
8 1 0
10 1 0
12 2 1
14 1 0
16 2 1

Example 1.6.12. Both, E? and Eg are in Mg. But dim(Mg) = 1 by Theorem 1.6.10 (b).
Hence E? and Ey are linearly dependent and as both are 1 at infinity, we can conclude
that £ and Eg are equal. So

o0 2 o0
(1 + 240203(71)(1") =E}=FEs=1+480) o0+(n)q"

n=1 n=1

, SO
n—1
o7(n) = o3(n) + 120 Z os(m)os(n —m).
m=1
This is very hard to prove (or even conjecture!) without using the theory of modular
forms.

Example 1.6.13. From the theorem, we deduce that
Msy = CE3y ® CAE5 & CA*E.
I claim that another basis for the same space is given by
Msy = CE; ® CAE; ® CA*E.

Note that these forms are linearly independent (exercise), so since dim(Msy) = 3, they
form a basis.

The following theorem is a very useful consequence of the fact that the spaces of
modular forms are finite-dimensional:

Theorem 1.6.14. Let f be a modular form of weight k and level 1 with q-expansion
Yoo ™. Suppose that

aj=0  forallj=0,...,|k/12].

Then f = 0.
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Proof. Suppose that f # 0. Then the hypothesis implies that
Veo(f) > |k/12] + 1 > k/12.

Hence the left-hand side of (1.3) is strictly greater than k/12, which gives a contradiction.
O

Corollary 1.6.15. Let f,g be modular forms of the same weight k and level 1, with
q-expansions Yy - anq" and Y - b,q", respectively. Suppose that

a; = b; forall j =0,..., |k/12].
Then f =g.

Corollary 1.6.15 is a very powerful tool: it allows us to conclude that two modular
forms are identical if we only know a priori that their g-expansions agree to a certain
finite precision.

1.7 The ¢-expansion of A

The aim of this section is to prove the product formula for the g-expansion of A. We
start with the following definition:

Definition 1.7.1. We define

1
Ga(z) =) > (mz 1)

meZ \neZ,(m,n)#0

and Ey(z) = 2 - Go(2).

Lemma 1.7.2.

1. The series in Definition 1.7.1 is convergent, but not absolutely convergent, and
defines a holomorphic function on H?.

2. We have .
Ga(z) = 2((2) — 87> o1(n)q".
n=1

Proof. 1. Exercise.

2. Argue as in the proof of proposition 1.4.5. ]
Proposition 1.7.3. The functions Gy and Ey satisfies the transformation property
1
272Gy (——) = Ga(z) — 2miz, (1.4)
z
1 61
2E,(--)=FE - 1.5
z 2 > 2(2) s ( )

Tt is not a modular form, however: it can’t be, since My = {0}.
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The proof of this result is based on the following lemma, which gives an example of
two double series that contain the same terms but sum to different values due to the
order of summation being different.

Lemma 1.7.4. For all z € ‘H, we have

Zz(mz+n mz—|—1n+1> =0 (1.6)

m##0 n€Z

2.2 (mz+n mz +1n+ 1) - _?' (L.7)

n€Z m#0

Proof. We start with the sum

5 11 1
mz+n mz+n+1) mz—N mz+ N’

—N<n<N

Using this, we compute the inner sum of (1.6) as

1 1 1 1
— = 1li — 1.8
Z(mz—l—n mz—l—n+1> N oo Z (mz—l—n mz+n—|—1) (18)

nezZ —N<n<N
1 1
=1 — ) 1.
NI—I>I<1>O mz—N mz+ N (1.9)
=0, (1.10)

which implies (1.6).
The proof of the second formula is more complicated, and I will not give the proof
here. For a reference, see Serre’s ” A course in Arithmetic”. O]

We can now prove Proposition 1.7.3:

Proof. Recall that

G +ZZ (mz +n)?

m#0 neZ

Subtracting (1.6) and simplifying, we obtain the alternative expression

G +ZZ (mz+n)? mz+n+1) (1.11)

m#0 EZ

Also, we have

272Gy (-1/2) =2 (2)27 + ) | Z e (1.12)

m#0 neZ
B Z e (1.13)
meZ n#0
)+ (1.14)
; W;] mz + n
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note that in the second equality we just relabelled the parameters, but did not change
the order of summation.
Subtracting (1.7) and simplifying, we obtain

9 27Tz_
2G(-1/2) + - =% +ZZ TR m2+n+1) (1.15)

n€Z m#0

and by imitating the proof of Lemma 1.4.3 one can show that the sum on the right-hand
side is absolutely convergent. We can hence change the order of summation, and we see
that (1.15) is equal to (1.11). O

Corollary 1.7.5. The g-expansion of A is given by

A=q]Ja—g9*

n>1

Proof. Let D(z) = q[[,>,(1 —¢M)*

Let D(2) = ¢-[[22, (1 — ¢™)** where ¢ = ™ as usual. We can check that this
product converges sufficiently fast for D to be defined and holomorphic on H. Evidently
D(z+1) = D(z) and D(z) — 0 as I(z) — 0o. So to check that it is a modular form of
weight 12 (clearly cuspidal), it suffices to show that D(—1) = 2'2D(z). The result then
follow immediately, since we already know that S is 1-dimensional.

Recall that % = 2m’qa%. Then

882 (log(D(z))) = 5’; (10g +22410g 1—q" ))

n=1

9
— 2m+24z : ming"
—q

= 2rmi (1 — 24an" Zq*)
n=1 r=0
= 2mi (1 — 24§: inq"r>

n=1 r=0

= 2mi (1 — 242 al(n)q”>
n=1
= 2mi Ey(2).
Hence finally

% (10g (%@)) _ %m B (—%) - % — i By(2)
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So there is a constant A sucht that D(—1) = Az'2D(z) for all z € H. For z = i solves
this to D(i) = D(—1) = AD(i), and since D(i) # 0 we have A = 1, and therefore
D(—1) = 2"2D(z). O

We can now expand the product formula for A(z) as

A(z) = Z 7(n)q" for some 7(n) € Z.

n>1
Conjecture 1.7.6. (Ramanugjan, 1916)
1. For m,n coprime, we have T(mn) = 7(m)7(n).

2. For p prime and n > 0, we have

n+1) 1 n—l)'

(") =7(p)T(@") —p 17(p

3. We have |7(p)| < 2p= for all primes p.

We will see a proof of properties 1) and 2) later in the course, in the section on Hecke
operators. Property 3) was proved by Deligne in 1974 as a consequence of his proof of
the Weil conjectures, for which he was awarded the Fields medal in 1978.
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2 Modular forms of higher level

The idea is to look at functions transforming nicely under subgroups of SLy(Z).

2.1 Congruence subgroups

Definition 2.1.1. For N € N define the subgroup

T(N) = {(i Z) € SLy(Z): (i Z) = <(1) ?) mod N}.

We will call this group the principal congruence subgroup of level N.

Note 2.1.2. I'(N) is the kernel of the group homomorphism induced by the reduction
map Z — Z/NZ:
7y : SLa(Z) — SLy(Z/NZ).

It is hence a normal subgroup of finite index. (Ex: show that 7y is sujective. This
statement goes by the name of "strong approximation for SLy”. It can be shown to be

false for GLy(Z).)

Definition 2.1.3. A subgroup I' of SLy(Z) is called a congruence subgroup if there
exists N > 1 such that I'(N) C T". The least such N is called the level of T

Lemma 2.1.4. Any congruence subgroup has finite index in SLy(7Z).

Proof. 1t sufficies to show that [SLy(Z) : I'(N)] < oo for all N € N. But this is clear as
SLy(Z)/T(N) < SLy(Z/NZ) and SLy(Z/NZ) is finite. 0

Remark 2.1.5. The converse to Lemma 2.1.4 is false. There exist finite index I"' C
SLy(Z) which don’t contain I'(N) for any N. (For example there is one of index 7.) But
every finite index subgroup of SL,(Z) is congruence for n > 3. So SLy is quite unusual.
(Bass-Serre-Milnor theorem)

Definition 2.1.6. Other standard congruence subgroups of level N are given by

. Fl(N):{(Z Z) € SLy(Z): (‘CL 2) - ((1) ’1‘) mod N},
e ={ (¢ 0) este@i (¢ 0) = (5 1) moan},
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Note 2.1.7. We have a chain of inclusions
I'(N) CTy(N) CTo(N) C SLy(Z).
These inclusions are in general strict; however, all of them are equalities for N = 1, and
['o(2) =T1(2).
Lemma 2.1.8. For N > 1, we have

() T = N, [0 n) = 8T (1),

pIN
1
[SLy(Z) : To(M)] = NJ] (14 - ).
p|N( p)

Definition 2.1.9. Let I" be a congruence subgroup. We say that I' is even (resp. odd)
if —Id €T (resp. Id ¢ I'). We define the projective index of I' to be

dr = [PSLQ(Z) . F],
where T is the image of T' in PSLy(Z).

2.2 Fundamental domains and cusps

Proposition 2.2.1. Let I be a congruence subgroup of Slio(Z), and let R be a set of
coset representatives for the quotient I'\ SLo(Z). Then the set

Dr=|JyD
YER

has the property that for any z € H there exists v € ' such that vz € Dr. Furthermore,
v is unique up to multiplication by an element of T' N {Z1d}, except possibly if vz lies
on the boundary of D. We call Dr a fundamental domain for I'.

Proof. 1f z € H, thern there exists g € SLy(Z) and zy € D such that g.z = z5. The coset
decomposition implies that we can express g uniquely as v~ 14/ with v € I" and 7' € R.
We now have

Y.z =7g.20 =729 € Dr.

The uniqueness is left as an exercise. O

Example 2.2.2. Let I' = I'g(2). A system of representatives for the quotient I'\ SLy(Z)

{((1) (1))<(1) —01)7((1) _11)}:{Id,S,ST}.

Using this, one can draw the fundamental domain for I'.

Note that there are now two points in its closure which do not belong to H: the cusp
oo, as well as 0.
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L b P

-1 -2/3 ;1/2 1/2 h

Figure 2.1: A fundamental domain for I'y(2)

Definition 2.2.3. The set P'(Q), the projective line over Q, consists of Q U {co}.
We give this an action of SLy(Z) via

a b ar + b
T = —
c d cr +d
where the right-hand-side is interpreted as £ if x = oo, and as oo if cx +d = 0.

Proposition 2.2.4. S1,(Z) acts transitively on P1(Q).

Proof. Clearly it sufficies to show that for any x € P!(Q) we can map oo to x. For
xr = 0o we have co.1 = co. So let x = 2 with a,c € Z coprime. Then there are r,s € Z
such that ar + cs =1, thus (2 7°) € SLy(Z) and (¢ 7°).00 = x. O

c r

Note 2.2.5. An easy computation shows that the stabiliser of co in SLy(Z) is the

subgroup
ST ()0 = {i <é l;) be z}.

It follows from Proposition 2.2.4 that we hence have a bijection

SLy(Z)/ SLa(Z) s — PHQ),

Definition 2.2.6. For I' < SLy(Z) of finite index we define the set of cusps of I,
denoted by Cusps(I'), as the set of T-orbits in Pg,.

Example 2.2.7. Let p be prime. Then Cusps(I'o(p)) = {[oc], [0]}.

Proof. Let @ € Q with u,v € Z coprime. Then there are r, s € Z such that ur +vs =1,
so (%7°) € SLa(Z) and (¥ 7°).co = “. We will distinguish two cases:

vr vor
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(1)

(2)

If p divides v then (¥ 7*) € To(p), so % € [oo]. Conversly, if v € T'g(p) then p
divides the denominator of .00 by definition. So the orbit of co is given by all

fractions ¥ with p dividing the denominator v.
If v is not divisible by p we can note that
u(r+ Av) +o(s — Au) =1

and since p is not a divisor of v we find A € Z such that ' = r + \v € pZ.
Therefore ( *,“) € Iy(p) where s’ = s — Au and ( %, *).0 = * by definition. So
% ¢ [0]. Conversly, if (¢4) € T'g(p) then p does not divide d since ad — be = 1.
Thus p cannot divide the denominator of +.0. Therefore the orbit of 0 is given by

all fractions # with p not dividing the denominator v.

So this is everything and there are exactly two distinct orbits as claimed. O]

Note 2.2.8. By Note 2.2.5, we see that

Cusps(y) = I'\ SL2(Z)/ SL2(Z) oo

In particular, we have a sujective map

SLy(Z)/ SLa(Z) s — Cusps(I).

Definition 2.2.9. If P = [t|] € Cusps(I'), denote by I'; the stabilizer for ¢ in I

Lemma 2.2.10. Choose y; € SLa(Z) such that v;(o00) =t. Then

Ty =T N SLa(Z) ooy

Proof. Let h € I'. Then

heTly ht=t

h7e(00) = 2(o0)

% i (o0) = oo
Yy € SLa(Z) o

h € v SLa(Z) oypt—1.

S R

Note 2.2.11. It follows from the proof that we have an injection

T\ (y; ! SLa(Z)seyi) < T\ SLa(Z),

so I'; has finite index in ;' SLy(Z) oo
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Lemma 2.2.12. The subgroup
Hp =4, ' Ty, N SLy(Z) s C SLy(7Z)
does not depend on the choice of representative for P, and it has finite index in Sliy(Z) -

Proof. We first show that if we have elements -, and 4; in SLy(Z) such that v,.00 = ¢
and ;.00 = t, then

Y Ty N SLa(Z) oo = 75 T3 N SLa(Z) e .

Note that 7; ', fixes oo, so it is an element in SLy(Z)s, say v, 5t = g € SLy(Z)w.
Then

Y T3 N SLa(Z)os = 97" 'Tyg N SLa(Z)
=g (7, "I NgSLa(Z)wg ™) g
= 7;11“% N SLy(Z) o

Here, we get the last equality since v, 'Ty; N ¢SLa(Z)sg™" C SLy(Z)se and hence is
commutative, so in particular its elements commute with g.

Suppose now that we choose another element ¢ in the I'-orbit of ¢, and let 7y € SLy(Z)
such that .00 = t'. Then we can write ¢ = g7, for some g € I" which satisfies g.t = t'.
Then

% Ty =%t Ty = 7 ' Ty s

and hence
VJIF% NSLy(Z)oe = 7 Ty N SLa(Z) e

]

Lemma 2.2.13. Let H be a subgroup of finite index in SLy(Z)w, and let h be the index
of £H in SLy(Z)w. Then H is one of the following:

Proof. Exercise. m

Definition 2.2.14. For H = Hp, the integer hAr(P) = h in Lemma 2.2.13 is called the
width of the cusp P for I'. The cusp P is

e irregular if Hp is of the form <(_01 fl )> (then I' is necessarily odd),

e regular if Hp is of the form ((}%)) (so I' is odd), of if Hp is of the form {+Id} x
((§%)) (so T is even).
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Remark 2.2.15. If I" is normal in SLy(Z), the subgroup Hp does not depend on the
cusp P, and hence all the cusps have the same width and regularity.

Example 2.2.16. Let us determine the width of the two cusps in Cusps(I'o(p)).

e ¢ = [00]: we need to determine the smallest A > 1 such that ({ %) or (' ") are

in I'g(p). Hence hryp)(00) = 1, since (§1) € To(p).

e ¢ = [0]: note that g.oo =0 for g = (9 3'). Moreover

a b\ 1 (d —c
I\c a)?9 “\=bp a)
so (94) € g7 'To(p)g if and only if b=0 mod p. In particular,

oy = (o Tololg) 0 2o == (7).

So the width of the cusp 0 is p.

We now want to count the number of cusps for a given congruence subgroup. We need
the following group-theoretic result:

Proposition 2.2.17. Let G be a group acting transitively on a set X, and let H be a
subgroup of finite index in G.

(i) For any x € X, Stabg(z) has finite indez in Stabg(x), and we have an injection
Staby (z)\ Stabg(z) — H\G
with image H\ H Stabg(x).
(i1) Let xy € X. Then there is a surjective map

H\G - H\X,
Hgw— Hg.xg

and for each v € X, the cardinality of the fibre of this map over Hx equals the
indez [Stabg(x) : Stabg(z)].

(11i) If R is a set of orbit representatives for the quotient H\X, we have

) "[Stabg(x) : Staby (x)] =[G : H].

z€ER

Proof. (i) is standard.
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For (ii), the transitivity of the G-action on X implies that for all z € X, we can choose
an element g, € G such that g,.xo = x, so the map H\G — H\X is surjective. Denote
by Ty, the fibre of this map over Hzx, i.e.

Ty, ={Hg e H\G|Hg.xo = H.z}.
Writing ¢ as ¢'g,, we obtain a bijection

Ty, 2{Hg € H\G|Hg'g,.x0 = H.x}
={H¢g' € H\G|H¢'.x = Hx}
= H\(H Stabg(z))
= Staby (z)\ Stabg(x),

where the last equality follows from (i).
(iii) Summing over R and using (ii), we obtain

(G : H] = |H\G| =) |Tu.| = ) _ [Stabg () : Staby (z)],

zER reR

which finishes the proof. ]

Corollary 2.2.18. Let I' be a congruence subgroup. Then

> he(P)=dr
PeCusps(T)
Proof. Apply Proposition 2.2.17 to G = PSLy(Z), H =T and X = PY(Q). O

2.3 Weakly modular forms for congruence subgroups

Definition 2.3.1. Let I' < SLy(Z) be a congruence subgroup, and let k& € Z. A
function f : H — C is a weakly modular function of weight k£ and level T if f is
meromorphic on H and f|y = f for all v € T

Remark 2.3.2. Let k£ be odd and I" be even. Let f be a weakly modular function of
weight k£ and level I'. By Lemmas 2.2.12 and 2.2.13 there is h € N such that i((l) ’f) el
SO

F=Fle(88) = fC+h)and  f=fle(57h) = =f(+h).
Hence f(z) = —f(z) for all z € ‘H and therefore f = 0.

Example 2.3.3. Let f be weakly modular of level SLy(Z) and weight k. Then f(Nz)
is weakly modular of level I'y(N) and weight .
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Proof. We have

az+b aNz +bN aNz+bN
f(ch—l—d) _f( cz+d >_f<%]\fz+d)'

If (25) € To(N) then (/i N?) € SLy(Z) and hence

i (%) = (%) v2) +d) F(NV2) = ez + ) F(N2)

as required. So z +— f(Nz) is weakly modular of level I'o(V). O

2.4 g-expansion at oo

Proposition 2.4.1. Let f: H — C be weakly modular of weight k and level T' and let

o If k is even or if k 1s odd, T' is odd and oo is a regular cusp, then there is a
meromorphic function f on the punctured disc D* such that f(z) = f(qn(z)) for
all z € B where q,(2) = e2™#/",

o [fk is odd, " is odd and oo is irreqular, then there is a meromorphic function F
on D* such that f(z) = e™*/"F(q(2)) for all z € H where q,(z) = e*™#/".

Proof. By Lemma 2.2.13, at least one of £(§ ") lies in I, so
f2) = (fle£(§1)) (2) = (ED) f(z + h)

for all z € H.
If k is even then (£1)* = 1,80 f = f(- + h), and if I" is odd and oo is regular, then
((1] ’1‘) € I', so we also have f = f(- 4+ h). In both cases we can argue as in section 1.3.
If k is odd and I is odd but oo is irregular, then —(§#) € I and therefore

f(z)=—f(z+h) VzeH.
Define a function F on H by F(z) = f(z)e™™*/". Then
F(z+h)=e T f(z+h)e ™" = f(z)e ™" = F(2).
So we can argue for F as before and get f(z) = e™*/"F(q,(2)). O

Remark 2.4.2. We can hence write f(z) as a g-expansion at co:

1(2) {Znel Qoo n Q) if k is even or if k is odd and I' is odd and regular at oo
z) =

Zne%% oo} if k is odd and T is odd and irregular at oo
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Definition 2.4.3. Let f: H — C be weakly modular of weight k and level I. We say
that f is meromorphic at oo if f is meromorphic at 0. Similarly we define f to be
holomorphic at oo if f is holomorphic at 0. If f is meromorphic at co, we define

Voo (f) = min{n € %Z Doop # 0.}

We then say f is vanishing at oo if vo r(f) > 0. If f is holomorphic at co we define

f(o0) = f(0) if k is even or if k is odd, I is odd and oo is regular
o, if k is odd and I is odd and irregular at oc.

Remark 2.4.4. To motivate the definition vor(f) = vo(F) + % in the irregular case
note that the additional % term ensures

Uoo,F(fQ) = Uoo,F(f) + Uoo,F(Q)

since this would fail for f, g with f(z) = e™/" f(g,) and g(z) = e™*/"§(q,) without this
extra term. Moreover, note that in the irregular case f being holomorphic at oo implies
f vanishes at oo.

2.5 ¢-expansion at a cusp

To define the g-expansion at a general cusp, we need the following result:

Lemma 2.5.1. Let f: H — C be weakly modular of weight k and level I and let g €
SLo(Z) oo but not necessarily in Hy,. Then f|xg is meromorphic at oo if and only if f is.

Moreover vog g-114(f1k9) = Voo, r (f) and (f|rg)(00) = f(00) if defined and if k is even.

Proof. We check that f|g is indeed weakly modular of weight k and level g~'I'g since

(flrg) |k (97 ) = (f1&7) kg = fleg-

Moreover we have

hy11(00) = [SLQ(Z)OO : g*lHoog} _ [SLQ(Z)OO ;HOO]

since SLy(Z) o is abelian and ¢ € SLy(Z) .
Now let g = £(§¢). Then

(+1)kf (e*mitlhg) if k is even or if k is odd, I' is odd and oo is regular,
(£1)keit/hF (e2mit/hg) | if k is odd and T is odd and irregular at oco. '

(flrg)(2) = {

So f|rg is meromorphic or holomorphic at oo if and only if so is f, and the orders of
vanishing are equal. O
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Definition 2.5.2. Let f be weakly modular of weight k£ and level I'. Let P € Cusps(I")
be represented by an element ¢ € P!(Q) and choose some y; € SLy(Z) such that ;.00 = t.

Define vpr(f) = v 10y, (fli0)-
The following proposition shows that vpr(f) is well-defined.
Proposition 2.5.3. vpr(P) is well-defined.

Proof. Suppose that 7/ € SLy(Z) also satisfies 7/.00 = t. then v, 'v/ € SLy(Z)s, 50 by
Lemma 2.5.1 applied to F|yy; we deduce that (f|kv:)|xy; 'V, = f|x7, is meromorphic at
oo if and only if so f|kv;, with the same order of vanishing.

Now let s be another representative of P, and let v, € SLy(Z) such that vs.00 = s.
Then there exists g € I' such that g.s = t, so g.7s.00 = t, so fry; is meromorphic at co
if and only if so is f|r(g7vs) = fr7s, with the same order of vanishing. ]

Note 2.5.4. Note that we can define f(P) = (f|xg)(oc0) if f is holomorphic at P and if
k is even, but if k is odd, then f(P) is only defined up to change of sign.

Definition 2.5.5. We say that f is holomorphic at P if vpr(f) > 0 and that f is
vanishing at P if vpr(f) > 0.

Definition 2.5.6. We say f is a modular function if f is meromorphic at every cusp,
f is a modular form if f is holomorphic on H and at every cusp, and f is a cusp
form if f is holomorphic on H and vanishes at every cusp.

Definition 2.5.7. Define My (T") to be the space of modular forms of level I and Si(I")
to be the space of cusp forms of level T'.

Clearly they are both complex vector spaces.

2.6 The valence formula in arbitrary levels

Definition 2.6.1. For z € H and I' < SLy(Z) of finite index we let
nr(2) = [stabr(2)].

If np(z) > 1, we say z is an elliptic point of T

Note 2.6.2. Clearly nr(z) is 1, 2 or 3, and it is 1 unless z € SLy(Z)-orbit of i or p.
There exist only finitely many I'-orbits of elliptic points for any I', often even none at
all, for example for I'1(N) if N > 4.

Theorem 2.6.3 (The valence formula). If f is a modular function of weight k and level

I and f # 0 then )
v:(f k dp
Z nr(z) + Z ver(f) = 12

z€l\'H PeCusps(I')

Here, dr is the projective index as defined in Definition 2.1.9.
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The proof of this will take us a while.
Definition 2.6.4. Let Vr(f) = > ry %(fz)) + D~ pecusps) VAT (f)-

Lemma 2.6.5. Let f be a modular function of level ', f #£ 0, and let IV < T be another
finite index subgroup of SLo(Z). Then

dro
dr

Proof. Let z € H. We apply Proposition 2.2.17 with X being the I'-orbit of z, G =T
and H =T". This yields

nr(w stabp(w
Z n ( ): Z \|stabrz((w))|]

Vrf(f) =

Ve(f).

wel’\'H F/(w) weH\X
[w]=[2] mod T
= =/ dr
= Z [stabp(w) : stabg (w)] = [F : F} =
weH\X r

and since nr(w) = nr(z) for all w € R,, we have

1 1 dp
Z nr (w) - nr(z) dr’

wER,

Hence we have

UV 1 dr Uy
Z n ) - Z (UZ(f) Z np/(w)> = dn Z (f)

weH\X zel\H wel'\'H r zel\H nF(Z)
[w]=[2] mod T

Similarily we can argue at the cusps: If P € Cusps(I') and @) € Cusps(I"”) which maps
to P under the natural map Cusps(I"') — Cusps(I'), then we have by definition

UQ,F’(f) = };LZ((CPE; ’UP,F(f)-

Therefore we get again by Proposition 2.2.17

S e =t ¥ G (i

Q€eCusps(IV) Q€eCusps(I)
Q=P in Cusps(T") Q=P in Cusps(I")
and thus
dp
Z UQ,F’(f) = Z Z UQ,F’(f) = d Z UP,F(f)-
QeCusps(IV) PcCusps(I')  Q€Cusps(IV) r PeCusps(I')
Q=P in Cusps(T)

This finishes the proof. O
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Lemma 2.6.6. For any g € SLy(Z) we have

Vo-1rg(flrg) = Vo (f).

Proof. We clearly have v.(f|rg) = vg.(f) for any z € H and n,-1r,(2) = nr(gz) since
stabr(gz) = g(staby-1py(2))g~*. Hence

Z Uz(flk:g) _ Z ng(f)

z€(g—1Tg)\H nQilFQ(Z) gz€l\H nr(gz)

This deals with the non-cusp terms in the valence formular. But similarily we can check
that vp(flrg) = vep(f) for all P € Cusps(I'), so the cusp terms in Vj-ipy(f|rg) and
Vr(f) are also equal. 0

Now we can finally proof the valence formula.

Proof of theorem 2.6.3. Let I'" be any finite index subgroup of SLy(Z) which is normal
and contained in I". (Note that such a group exists since I' is a congruence subgroup.)

Then J
Ve(f) = o= Vor(f)
F/
by Lemma 2.6.5. Let d = dr and choose g1, ...,ga € SLy(Z) such that gi,...,gq are
coset representatives for PSLy(Z)/I". Define

d

F(z) = [ [(flrg0)(2).

i=1

Then F' is weakly modular of weight dk for the full modular group SLy(Z), and mero-
morphic at co. Hence by Theorem 1.5.10, we have

dk k
VsLyz)(F) = B = Ve (F) = dZﬁ

since Vi (F') = d Vgr,z)(F) by Lemma 2.6.5 But we can easily check that

d d
Vi (F) = Z Voo (flkgi) = Z Vi, (flrgi) = dVie(f)

where we obtain the last two equalities since I is normal and applying Lemma 2.6.6.
Hence

dk kdp
V=5 = V() =-o

which finishes the proof. O
Corollary 2.6.7. M(T") is empty for any k <0 and for any T".

Proof. Clear since the left hand side of the valence formula must be non-negative. [
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Corollary 2.6.8 (" The unreasonable effectiveness of modular forms in number theory”).
Let k € Z and suppose f and g are modular forms of weight k and level T, and their
g-expansions agree up to degree X so up to and including q;" where m = [kdrj and

2
h=he(l'). Then f =g.

Proof. We have voo r(f —g) > 1+ LdeJ kl‘ér, which yields a contradiction to Theorem

2.6.3 unless f — g = 0. O

Corollary 2.6.9. For any k > 0 and any finite index subgroup I' < SLy(Z) we have

dim (M;,(T)) < 1+ Vﬁfﬂ

In particular My(T") is finite dimensional.

Proof. Let m = [E2 | and h = hoo(T'). Consider the linear map Mj(I') — C™*! mapping
f to the coefficients up to ¢;" in its g-expansion. By Corollary 2.6.8 this map is injective,
hence dim(M(T')) < m+ 1. O

Remark 2.6.10.

(i) It can be shown that if —1 € I" and k is any non-negative even integer or if T" is
odd and k£ is any non-negative integer then

dim(M(T)) > (1—k2 — 1)dr.

(ii) In Diamond & Shurman there are precise formulae for the dimsion of My(T").

2.7 Eisenstein series revisited

Recall that SLy(Z)o = £(§ %), and let SLo(Z)L = (§%) C SLa(Z)

Proposition 2.7.1. (a) Let g,g' € SLy(Z), g = (¢}) and ¢’ = (%%). Thenc=¢
and d = d' if and only if there is an goo € SLa(Z)L such that ¢ = goog.

o0

(b) For (c,d) E Z? there exists v € SLo(Z) with bottom row (c,d) if and only if
ged(e, d

) =
Proof. For (a) note that

, 1 fd ¥ d —=b\ [(dd—-Vc —db+Va\ (1 ab —ad'b n
g9 = (c d) (—c a) 0 —cb+da ) \O 1 € SLa(Z)s
Part (b) is clear since ged(c, d) divides det(7). O

Corollary 2.7.2. The mapping (‘; 2) — (c,d) gives a bijection
SLy(Z)1\ SLa(Z) — {(c,d) € Z*: ged(e,d) = 1}.
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We will now motivate the definition of a generalised Eisenstein series using this bijec-
tion.

Note 2.7.3. Observe that 1[4(24) = (cz + d)7*, so 1 is SLy(Z)Z -invariant. Hence the
unnormalised level 1 Eisenstenstein series G(z) can be written as

: >
2 - Z 2 :
(c,d)ezZ2\{0} (CZ - d r=1 ( (c,d)eZ? <CZ + d)
ged(e,d)=r

1
> (5 Y ot
(c, d)eZ
ged(e,d)=

) (2
[M€SL2(2)%\ SL2(2)
C(k

> iy, 2) 7k

[W]ESLZ( )3\ SL2(2)

Definition 2.7.4. Let I" be a congruence subgroup of SLy(Z), and let I'Y, = 'NSLy(Z) %

For k > 3, define
Gk,F,oo = Z j(f}/a Z)ik‘

yel L\l

Proposition 2.7.5. The function Gy @5 a weakly modular function of weight k and
level T'.

Proof. It can be shown that the sum defining Gy, r o, converges absolutely and uniformly
on compact subsets of H. Thus Gjr is well-defined and holomorphic. Moreover,
G 1s also clearly I'-invariant under the weight k action. O

Proposition 2.7.6. If either k is even or if k is odd and I' is reqular at oo, then G r s
1s @ modular form of weight k and level I, which does not vanish at oo, but at all other
cusps. Conversly, if k is odd and I' is irreqular at oo, then G = 0.

Proof. First suppose that k£ is odd and I" is odd and irregular at oo, so g = (_01 _”1) el
for some n € Z. Then g ¢ T'} and

(v, 2) "+ j(gv, ) F = (cz + d)F + (1) (cz + d)F =

for all v € I'. Hence the terms in the sum defining G r o cancel out, so Gy = 0.
Now let k be even or let k be odd and I' regular at co. We compute Gy 1 o(00). We
have

A ife=
lim (cz+d)~* = te="0 (2.1)
S(z)—o0 0 ifc#£0
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Note also that for v = (¢ %), we have ¢ = 0 if and only if v € I's.. Thus

Grroo(00) = lim Gireo(z)

YET LMoo
which takes the following values:
I even ooFre(é%(liar ooI;rrggﬁllar
k even 2 1 2
k odd 0 1 0

I\l | £Id | Id [ (d, (7'}))

Now let P be a cusp different from oco. Let ¢ be a representative of P, and choose
v € SLa(Z) such that ;.00 = t.
Then by definition, we have

Grro0(P) = (Grr ool V) (00).

But

(Crrochn) ()= D o)™ = > i)™

YETEAT YeT L\

Claim: any g = (¢%) € I'y; has ¢ # 0.

Proof of claim: if g = vy, had ¢ = 0, then g € SLy(Z)s, 50 7 € SLy(Z) ooy, ' NT. But
any element in SLy(Z)sy; - maps ¢ to oo, which gives a contradicton since P # oo, i.e.
t does not lie in the I'-orbit of co. We therefore deduce from (2.1) that

Grroo(P) = (Grroec|k7t) (00) = 0.

In particular Gy r oo|kg is bounded as J(z) — oo for all g € SLy(Z), so G 1o is indeed
a modular form. O

Note 2.7.7. We have constructed a modular form that doesn’t vanish at oo for all pairs
(k,T") where this isn’t trivially impossible.

Corollary 2.7.8. Let T" be a congruence subgroup, let P € Cusps(T'), and let k > 3. If
k is odd, assume that P is reqular and that I" is odd. Then there is a modular form in
M;(T") does not vanish at P but at all other cusps.

Proof. Let t be a representative of P, and choose y; € SLy(Z) such that ;.00 = t. Define

—1
Grr,p = Grg-1rgeo |k 97 -

Then Gy r p is a modular form of weight k and level I' which does not vanish at P but
at all other cusps, by Proposition 2.7.6. O]
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Note 2.7.9. The Eisenstein series G p is well-defined if k is even, and in this case
independent of the choice of t. But if k is odd Gy, p is only well-defined up to sign.

Definition 2.7.10. We define &, (I") as the subspace of My (I') spanned by the G p’s.
Note 2.7.11. We have

| Cusps(T')], if k is even

dim(& () = '
im(&x(T)) { [)|, if kis odd and T is odd

| Cuspsreg(

Example 2.7.12. Let p be prime and I' = T'y(p). Then Cusps(I") = {0, oo}, both cusps
are regular (see Example 2.2.16), and I' is even. So the case k odd is trivial. For & > 4
an even integer there are two Eisenstein series: G r oo and Gy .

e G by the definition of I'g(p) and Proposition 2.7.1 we have

1
Ceree= 2, (rap

(c,d)eZ?
ged(e,d)=1
ple

o Gjro: note that we have S.oo =0 for § = (9 ') and

STITS = {(‘C‘ Z) : p didivdes b} = T(p).

Now clearly
M ={G5)}

and T°(p)Z\I'"°(p) can be identified with the set

{(c,d) € 2 — {0} : ged(c,d) =1, ptd}

Grro(z) = (Gk,r0<p),oo|k <(1) _01)) (2)

Hence

1
N (cd)ZeZ2 (—c+dz)k
gcd(c,d):l

pld

1
- ¥

(c,d)€Z?
ged(e,d)=1
pte
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Thus we have

Grroo(2) + Grro(2) = Grsiyz),00(2) = 2E5(2).

Finally consider

1
2B (pz) = Z (et

(c,d)eZ?
ged(e,d)=1

Note that if (¢,d) € Z* with ged(c,d) = 1, then ged(pe, d) = 1 unless p divides d.

So
1 1
2E(pz) = —_—+ —_—
(C%E:W (cz + d)k (C%E:W (pcz + d)k
gcci(c,d):l gcci(c,d):l
ple pld

We can check that

{(pc,d): ged(c,d) = 1,p|d} = {(pc,pd): ged(e,d) =1,ptc},

which gives us

2F Grr oo = Grroo + 0 *Grro.
w(pz) = G, +(dz (pez —|—pd ET,c0 T D E,L,0

ged(e,d)=1
pfc

Hence & (I") is spanned by Ej(z) and Ej(pz). Note that we have also shown that
Ey(pz) is p~* at cusp 0.



3 Hecke operators

3.1 Double cost operators

It turns out that the space My (T") has a very interesting structure: it is a module over
a commutative ring, classed the Hecke algebra.

Lemma 3.1.1.

1. If T is a congruence subgroup and o € GLo(Q)T, then SLy(Z) Na™'Ta is also a
congruence subgroup.

2. Any two congruence subgroups are commensurable: we have
[y : TNy < oo and [y : Ty Ny
Proof. 1. Let N > 1 such that I'(N) C T, and such that Na € My(Z) and Na™! €
M,(Z). Then one can check that
ol (N*)a ™' CT(N) CT,

so I(N?) Ca™'Ta.
2. Note that there is some M > 1 such that I'(M) C 'y N Ts. O

Definition 3.1.2. Let GL3 (Q) denote the set of invertible 2 x 2 matrices over Q with
positive determinant. Let I';, 'y be congruence subgroups, and let a € GL3 (Q). The
double coset I'yal'y is the set

Ial'y = {mavys|m €T, 72 € s}

Note 3.1.3. Multiplication gives a left (resp. right) action by I'; (resp. by I's) on
I'yal's. We can hence decompose the double coset into I'j-orbits:

Flong = U Flﬂj-
J

We will see in a moment that this decomposition is finite.

Proposition 3.1.4. Let 'y, T'y be congruence subgroups, and let o € GLo(Q)™. Let
Fg = (a_lfla) N FQ.
Then the map o — 'y, induces a bijection

Fg\FQ = Fl\FlozFQ.
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Proof. Consider the map
Iy = To\(Thal), Y2 = Diays.

The map is clearly surjective, and two elements s, v, get mapped to the same element
if and only if
FlOé’)/Q Flony = ’Yé’}/gl € oflfloz N FQ.

Note 3.1.5. By Lemma 3.1.1 (2), we have [I'y : I's] < co.

Corollary 3.1.6. Let I'y = |JI'sy; be a coset decomposition of I's\I's. Then

Flafg = U Fl(X’)/j

is an orbit decomposition (so Tvay; NTyary; = 0 if i # j). In particular, the number of
orbits of I'yal’y under the action of I'1 is finite.

Note 3.1.7. Note that the action of SLy(R) on H extends naturally to GLj (R).
Definition 3.1.8.
(i) Let k € Z. For a function f: # — C and (2%) € GLJ (R) we define

(f|k (“ b)) (2) = (ad — be)* ez +d)* f (Zjiz) .

(i) Let I'y,Ty < SLy(Z) of finite index, g € GL5(Q) and let Bi,..., 5, € GLy(Q)"
be an orbit decomposition I'1gl'y = [JI'15; as in Corollary 3.1.6. For f weakly
modular of weight k£ and level I'; we define

fle [Figls] = Zﬂkﬁz

Proposition 3.1.9. f|;[I'1g'2] is independent of the choice of the 5;’s, and it is weakly
modular of weight k and level T's.

Proof. 1f By, ..., 5% is another set of coset representatives then we see that s = r. So we
can reorder such that ; = ;5. for some v; € I'y. Hence f|x5; = f|xf}, so flx[['19T2] is
independent of the choice of the 3;’s.

In particular, if fy,..., 3, is one such choice then so is 517, ..., 8,72 for any 75 € I's.

Hence the sum . . .
Zﬂk»@i = Zf|k(5ﬁ) = (Z fleB) s
i=1 i=1 i=1

so > i, fleBi is weakly modular of weight & and level T's. O
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Note 3.1.10. Note that acting on the right of f|z[I'1gl's] by 'y is effectively permuting
summands.

Proposition 3.1.11. If f is a a modular form or a cusp form of level I'y then so is
flk[C19Ts] of level T's.

Proof. If f is a modular function, a modular form or a cusp form of level I'; then so is
each term f|.B; of level 3, '3 N SLy(Z). Hence all the f|.f3; are of the same type of
level TV := SLy(Z) N Ni_, B; 'T18; N Ty and thus so is f|x[T1gTy).

But all of the properties for a function being a modular function, a modular form or
a cusp form of some level I' are satisfied ifthese properties are already satisfied at any
smaller level IV C T" of finite index. So we can descend from IV to I's. O

Remark 3.1.12. We thus have a map

I'igl
[1gT2]

M,.(T'y) M;.(Ty).

This map preserves cusp forms and hence induces a map

Examples 3.1.13. (1) If g7'T';g = 'y then I'igl'y = T'yg = gI's. So the map f —
fle[T1gTo] is just f = flrg.

(2) More generally, if g7'T'yg D T’y then this map is still f — f|rg, but it is not an
isomorphism anymore.

(3) If 'y DTy and g = Id, then I'1gI'y = T';, and I'y = I';. Id is an orbit decomposition.
Then fi|[I'1gl's] = fx Id = f. This just says that M(I';) is a subgpace of M (I's).

(4) Suppose I'y C T’y and g = 1. Then the «;’s are just coset representatives for I'y\I'
and we are sending

Fe >0 fler

~eT'1\I'2

This is a surjective map My(I'y) — Mi(I's). The restriction of this map to
M (Ty) € My(Ty) is just the multiplication by the index [['y : T';]. (The map
is called the "trace map” from level I'; to level I's.)

(5) The last example is a much more subtle one. Let I' = I'} = I'y = SLy(Z) and
g=(69) for some prime p. Then

TN (g'Tg) =) = { (‘é Z) . p divdes b} .
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One can check that I'°(p)\I' is given by the coset representatives ( 71) —o...p1 and

(93')- So for f

€ M (I") we have

e Zfik[( D) o D]+ n) (7))

—;frk(l ) f\k(p 01>

p—1 .
=> Pt (%) +" ()N f (—i) :
=0

But f is a modular form of level SLy(Z), so

(p2) " f (—]%) = <f|k ((1) _01>) (p2) = f(p2).

Therefore we get

18~
= 52 (5
P

) + P f(p2).

We extract the following lemma from Example (5).

Lemma 3.1.14. Let H be the subgroup of SLo(Z/pZ) consisting of the lower-triangular
matrices. Then we have

where a; = ((1){) for g
Definition 3.1.15.

H\ SLy(Z/pZ) = |_| Ha,; U HPp,

=0,...,p—1and g = ( 1).
(a) Let I'y,I'y < SLy(Z) of finite index. We define R(I'y, ') to

be the C-vector space with basis the symbols [[';gT's] for each g € I';\ GL3 (Q)/Ts.

(b) Let I'1, 'y, I's < SLy(Z) of finite index. We define a multiplication

For [T'1gT5] € R(

We define

where

R(Ty,T) x R(T,T'3) — R(I'1, Ty).
Fl,FQ) and [FQhF;g] € R(FQ,Fg) write

Flgfg = H Fl/\z and FQhFS H PQ/LJ

[[1gTs] % [[ohDs] = > ¢y - 01775

v€l'1\ GLF (Q)/T's

ey = {03, 4) € {1,...,s} x{1,...,t}: hip; € Ty}
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Remark 3.1.16. It is tedious to check that this definition is indeed well-defined, so
independent of the choice of A\; and p;, and that this multiplication is associative, so

T1gTs] x ([FQhrg] x [ngn]) _ ([Flgfg] x [F2hF3]) » [TajTal.

Moreover, we have to check that the introduced multiplication satisfies

£1e(I019T) x [CahTe] ) = (f1ell1gTa] ) [T2AT).

In particular, R(I") := R(I',I') is a ring and M(I") and Sk(I") are right modules over it.

3.2 The Hecke algebra of [';(N)

Lemma 3.2.1. Let T be any congruence subgroup containing I'(N). If p is a prime
which is comprime to N, then I' surjects onto SLy(Z/pZ) under reduction (mod p).

Proof. 1t is clearly sufficient to prove the result for I' = T'(N). We know by Strong
Approximation (Question Sheet 4) that the map

SLo(Z) — SLo(Z/NpZ)
is sujective. Since N and p are coprime, we have
S (Z/NpZ) = SLy(Z/NT) x SLy(Z/p),
so we deduce that the map
SLy(Z) = SLy(Z/NZ) x SLo(Z/pZ), z+— (x (mod N), z (mod p))

is surjective. It follows that for any element A € SLy(Z/pZ) there exists A € SLy(Z)
which maps to (Id, A). Since

['(N) = ker (SLo(Z) — SLo(Z/NZ)) ,
this finishes the proof. O
Proposition 3.2.2. Let p be prime, N > 1 and I' =To(N) or I' =T';(N).

(i) If p divides N then
10 Yro (1
F(O p)r_gr(o p).

(ii) If p does not divide N then

—1
10\, 7 1 i p 0
"o )r=Lr ) v (@)

(2

where v = 1 in the case of To(N) and v = (f§}) in the case of T1(N) with a,b
being any integers such that ap — bN = 1.
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Proof. Let g = ((1) 2) For ' =To(N) or ' =T'1(N), let
I'=Tn(g 'Tyg).
We need to find representatives for the quotient I"\I'.

1. Assume p{ N.
Now for I' = T'y(N), we have

"= {(CCL Z) : p divides b, N divides c}

and for I' = I';(N) that

r— a b\ pdivides b, N divides c
N ¢c d)] a=d=1 modN '

Hence in both cases the image I" = I (mod p) is (#9) C SLy(Z/pZ), and by
Lemma 3.1.14 we have

p—1
'\ SLy(Z/pZ) = | |T'a; UT'B,
§=0
By Lemma 3.2.1, we know that there exists lifts of the coset representatives to I'.

For o, this is easy: we take the lift o;; = ((1) {)

For I3, we need to find an element 3 of I'y(N) or I';(N) whose reduction (mod p)

lies in the coset
(:9)(V ) = (97) SLa(Z/pZ).
This will be satisfied by any matrix g € I" which
o for I' =T'4(N), is of the form (]’\’;’C Z) with a, b, ¢, d € Z such that pad — Nbc =
L;

e for I' =T'{(N), is of the form (]’\’fac Z) with a, b, ¢, d € Z such that pad — Nbc =
1, and such that
pa=d=1 (mod N).

We make the spicific choice that ¢ = d = 1; it is then easy to see that we can
find a, b which satisfy pa — Nb = 1; note that this automatically implies that
pa =1 (mod N).

Hence we obtain the decomposition

p—1
II'=| Mo, ur'B
§=0
10 "
= F(O p)F:Ur’(ég)azur(ég)ﬁ
j=0
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Now write
10 pa b [a b p 0
0 p) \Nc d) \Nc pd) \0 1)°
10 a b p 0
F(Op)ﬂ F(Nc pd> (() 1>'

: a
In the case I' = T'g(N), the matrix (Nc od

r(gg)ﬁ:r<g ?)

For I' = T';(N) and our choice ¢ = d = 1, we get the claimed result.

SO we can write

) is an element of I', so we have

2. Assume p|N. Then one can check that ( )J 0 | s a set of coset representatives

-----

for (TN g 'Tg)\T, so we don’t need v, since any element of I" has diagonal entries
coprime to p.

Corollary 3.2.3. Let ' =T4(N) or I' =T'1(N), and let f € My(T).

1. If p diwvides N, then

10 15~ (Z—i—i)
r r = -
()55
2. If p does not divide N, then

[r ((1) g) ] :%jzzf(ZH)er“(flw)(m),

where 7y is as in Proposition 3.2.2. In particular, in the case I' = T'o(N) the term
flry reduces to f.

Definition 3.2.4. Write T, for the operator {Fl(n) ((1) 2) Fl(N)}.

3.2.1 Diamond operators

Definition 3.2.5. Let N > 1. A Dirichlet charachter mod N is a homomorphism
X:(Z/NZ)* — C*.
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Example 3.2.6. The map
(Z)AZ)* - C*, 1—1, 3+ —1

is a Dirichlet character mod 4. In particular, it is the only non-trivial character mod 4.
An example of a character mod 13 is the map

(ZJ13Z)* — C*, 2+ ¥™/12)
which is well-defined since 2 generates (Z/13Z)*.

Note 3.2.7. If M divides N any Dirichlet character mod M induces a character mod
N.

Definition 3.2.8. We say a character y is primitive if it is not induced from a character
(mod M) for any M dividing N, M < N.

Example 3.2.9. The characters in Example 3.2.6 above are primitive characters. How-
ever, the character
x:(Z/82) —C*, 1,b—1, 3,7— —1

is not primitve since it comes from the above character mod 4.

Note 3.2.10. If x is a Dirichlet character (mod N), it can be extended to a map
X : Z — C by the recipe

The resulting function is multiplicative: it satisfies
X(dids) = x(d1)x(dy) Vdy,dy € Z.
Lemma 3.2.11. The map
L To(N) > (Z/NZ)*,  (24) = d (mod N)
1s well-defined, and it induces an isomorphism
[o(N)/T1(N) = (Z/NZ)*.

Definition 3.2.12. Let d € (Z/NZ)* , and let g € I'o(N) such that L( ) =d (mod N).
Then the diamond operator (d) is the double coset operator I'; (N)gl'1 (N) € R(I'1(N)).

Note 3.2.13. Since I';(N) is normal in I'g(/V), we have
I (N)gl'(N) =T'1(N)g = gl'i(N).

The map
(Z/NZ)* — R(T'1(N)), d — (d)

is hence a group homomorphism, and we get an action of (Z/NZ)* by linear operators
on My (I'1(N)) and Si(I'1(N)).
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Recall the following result from the representation theory of finite groups:

Proposition 3.2.14. Let V' be any complex vector space with an action of (Z/NZ)* by
linear operators. Then
V- @ v

x: (Z/NZ)*—CX*

where
VX = {v eV:gv=x(g) v foralge (Z/NZ)X} )

Definition 3.2.15. Let x be a Dirichlet character. We define My (T'1(NV),x) as the
x-eigenspace My (I'1(N))X for the action of (Z/NZ)*. In other words,

Mi(Ty(N), x) = {f € Mp(T1(N)) : (d)f = x(d)f Vd e (Z/NZ)"}.

This is called the space of modular forms of weight k&, level N and character Y.
We similarly define Si(I'1(V), x).

Example 3.2.16. If 1 is the trivial character mod N then
Mp(T1(N), 1y) = M(To(N)).
To see this consider f € My (I'y(N),1y). Then for all g € I'y(N) we have
fleg = (a)f =T

Note 3.2.17. We have M (T';(N), x) = {0} unless x(—1) = (=1).

3.2.2 Hecke operators on ¢-expansions

Definition 3.2.18. Define the following two operators on formal g-expansions: let ¢ =
e?™* and define

Up’f = Zanpqn7
V= 3 e

Lemma 3.2.19. If f =>"° a,q", then
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Proof. Note that if ¢, = e%, then

Now

j=0 7=0
1 Pl +
_ = Z an€27r7,n 1
p 7=0 n=0
s 2winz 1 pil
> udt (154)
n=0 7=0
=Up,.f
by Lemma 3.2.19. The statement for V), is clear.
Theorem 3.2.20. If f € My(I';(N)), then
_JUf if pIN
Tp'f - k—1 :
Up-f + 0"V (p).f ifpt N

Proof. Immediate from Corollary 3.2.3 and Lemma 3.2.19.
Corollary 3.2.21. If f € My(I'1(N), x), then for all p we have

Tp.f = Up.f +x(p)p* 'V, f.
Note 3.2.22. Recall that x(p) =0if p | N.

Example 3.2.23. Consider the Eisenstein series

Claim. Fj(z) is an eigenform for all 7}, and
T,.Ey = 0p1(p)Ey, = (1 4+ p* ) E,.
Proof of claim. By Theorem 3.2.20, we have for any f € M;(I'1(1))
(T f) = an(Uy.f) + 9" an(Vy ) = anp(f) + 1" Fans(f),
where we understand that a,/,(f) = 0 if p{ f. Hence

ao(TpEr) = ao(Ex) + p*'ao(Er) = 011 (p).
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For n > 1, we get

2k

an(TpEk) = _B_k (ak,l(np) —i—pk*lak,l(n/p)) ,

where o;_1(n/p) = 0 if pt n. We now want to show that

op—1(pn) + p"or_1(n/p) = or_1(n)or_1(p) Vn > 1.
e For p 1 p, this is just the multiplicativity of op_;.

e if p|n, write n = p®m with p t m. Then we need to show that

e+1 k—1

ok (P m) + p" ok (p°Im) = ok (p)ok—1(p°m)
& o () +p" o (077 = ok (p)ok_1 (p°). (3.1)

since p and m are coprime. But (3.1) can easily seen to be true.

3.2.3 The Hecke algebra

Definition 3.2.24. For A € Q* write R, for the Hecke operator [Fl(N)(é R)Fl(N)}.
Define T (I'y(N)) as the subalgebra of R(I'y(N)) generated by the operators 7,, R and
(d) for all primes p, A € Q* and d € (Z/NZ)*.

Proposition 3.2.25. The algebra T (I'y(N)) is commutative.
We will only sketch the proof:

Proof. The R)’s commute with everything since (6\ 9\) is central in GL3 (Q) and the
(d)’s commute with each other. So it remains to show that the 7,,’s commute with each
other and with the (d)’s.

We will first show that for p, ¢ distinct primes, we have

1 0

Tqu = Tqu = Fl(N) (0 g

) Ty (N).

To simplify the notation, let I' = I';(/V). Recall the multiplication in R(I'): write
T, = Ulay, T, = | |T'B;, with o; € F((l)g)F, B € F((l) 2)F. (Of course we know what
the oy, ; are explicitly, but we do not use that here.) Then

T,T,= Y ¢ [9)
7€\ GLF (Q)/T

where ¢, = [{(¢,7): a;3; € T}
Claim. For all « € T'(§ )T, B € I(§9)T, we have

af €T(4p)-
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Proof of claim. Note that o has determinant pg, so by the Smith normal form we
have a8 € SLa(Z)(§ gy ) SL2(Z). One can show that since a8 = (§,,) mod N we in

pq 0 pq
fact have
1 %
af el T.
0 (0 pQ>

This proves that the product 7,7} is a constant multiple of I''(N)(§ 2 )T1(N) and
one can check that this constant is indeed one.

It remains to check that 7,(d) = (d)T,,. Let v = (¢4) as in the definition of (d). Note
that since I';(N) is normal in T'y(N) we have

(@7, = @) [0 (o §) o)
=T1(N) (I (N)y ) (’y <(1) g) 71> T1(N)
= [rnn (g 0)rn] @

But v(§ )7~ has determinant p and is (§;) mod N. By multiplying on the right

by some power of (§1) € I't(N) we can make this be (§9) mod N. So it is in

T1(N)(§9)T1(N) and thus T, (d) = (d) T,,. O
Definition 3.2.26. For a prime power n = p", r > 2, we define T}, by

T, — (T,)", if p divides NV,
i Ty—1T, —p R)T,—2 (p), if p does not divide N.

For general n = pi' ... p," we define T,, = Ty .Tp;k.

Note 3.2.27. We have T, € T(I'1(N)) for all n € N by definition. In particular all 7,,’s
commute.

Proposition 3.2.28. Let f € M(I'y(N)), and let m,n be comprime. Then an(T,f) =
(). In particular, we have a1 (T, f) = a,(f).

Proof. First a prime power n = p". By induction and using proposition 3.2.20 we get

Ty (f) = Z ar (f)g" + P Z anpr—1 ((p) f) 4"

n=0

+ p2(k—1) Zain'*Z (<p>2 f) qnpz

n=0

+ o I () e
n=0
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If n =pi*...p* with ged(n,m) = 1, then

&m(Tnf) = am<Tp;1 s szk f) = Qi1 ((Tpgz s szkf) == ampzl...m;k (f)
[l

Remark 3.2.29. For general m,n (not necessarily comprime), one can show (exercise)
that
am(Tnf) = Z dk_la% (d) f) -
d|ged(m,n)

Proposition 3.2.30. For all x mod N the operators T,, preserve the subspaces My(I'1(N), x)
and Sk(I't(N), x) of Mi(I'y(N)) and Sk(I'1(N)).

Proof. This follows from the commutativity of 7 (I';(N)) as commuting operators pre-
serve each others eigenspaces. O

Definition 3.2.31. Wesay f € My(I'1(V)) is an Hecke eigenform (or just eigenform)

if it is a simultaneous eigenvector for all the operators in 7 (I'y1(V)) (i.e. for all the 77 s
and (d)’s).
A normalized Hecke eigenform is an eigenform satisfying a;(f) = 1.

Note 3.2.32. Let f € My(I';(N)) be an eigenform, say T,,.f = A\, f for all n. Then

an(f) = a1 (Tnf) = Mar (f) Vn > 1.

It follows that if a,(f) = 0, then a,(f) = 0 for all n > 1, so f is constant. Therefore a
non-constant eigenform must have a;(f) # 0, and it may be scaled to be a normalized
eigenform.

Theorem 3.2.33. Let f € My(I'1(N)) be a normalized eigenform. Then the eigenvalues
of the Hecke operators T,, on f are the coefficients of the q-expansion of f at the cusp
00: we have

To.f =an(f)-f Vn>1.

Proposition 3.2.34. Let f € My(I'1(N), x) be a modular form with g-expansion ), -, an(f)q"
at co. Then f 1s a normalized eigenform if and only if

7 a1<f) = 1,'
it G (f) = am(f)an(f) for all m,n comprime;
i1 ay (f) = ap(flap—1(f) — p" " 'x(p)ay—2(f) for all primes p and all r > 2.

Proof. The implication = follows directly from Definition 3.2.26 and Theorem 3.2.33.
Conversely, if f € M(I'1(N), x) satisfies properties (i)-(iii), then f is already normalized,
so we need to show that it satisfies

(T f) = ap(f)am(f) Vp prime, Ym > 1.
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If p ¥ m, then it follows from Proposition 3.2.28 that a,,(7,.f) = amy(f), which by (i)

is equal to a,,(f)a,(f). If m = p"m/ with p{m/, then by Remark 3.2.29 we have
am(Tpf) = apT+1m’(f) + X(p)pk_laprlm«f)'

Using (ii) and (ii), this can be shown to be equal to a,(f)a,,(f) as required. O

Question. Do such normalized eigenforms actually exist?
Example 3.2.35.

1. A non-Eisenstein eigenform is given by A € S12(SLy(Z)). This is clear since all T},
preserve Sio and Sis is spanned by A. Moreover A is obviously normalized. Let
7(n) = a,(A). Then

T(mn) = 7(m)7(n)
for m and n coprime by Proposition 3.2.34. This shows a statement which was
made in the prologue of this lecture.

2. Similarly we can show that the cusp forms E A, EsA, E2A, E4EsA and EFEgA
of level (SLy(Z)) and weight 16, 18, 20, 22 and 26 are normalized eigenforms since
the corresponding spaces of cusp forms are one-dimensional.

3. More interesting is the case k = 24 since Sa4(SLo(Z)) is two-dimensional. It can
easily be shown that Sy (SLo(Z)) is spanned by f; = E3A and f, = A% The
g-expansion of these are given by

fi = g+ 696¢% + 162252¢> + 1283180894 + . ...

fi=¢* —48¢> +1080¢* + ....
We want to know how 75 acts on this basis. By the formula in the proof of
Proposition 3.2.28, we have

T5(f1) = (696q + 128318089¢° + ...) + 2% (¢* 4 696¢" + .. .)
= 696¢ + 136706697¢> + . ..
and
To(f2) = (q+1080¢* +...) +2% (¢" +...)
= ¢+ 1080¢> + ...
In terms of the given basis we therefore have
To(f1) = 696 f, + 136222281 f,
Ty(f2) = f1 + 384 fo.
Thus T is given by the matrix

696 1
136222281 384 ) °

Open conjecture (Maeda’s conjecture). The Galois group of the splitting field of the
characteristic polynomial of Ty on Sk(SLa(Z)) is as large as possible, so isomorphic to
the symmetric group Sym(d) where d = dim(Sk).
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3.3 The Petersson product

The aim of this section is to define a Hermitian inner product on the space Si(I'1(V)).

Lemma 3.3.1. Let U C H be a closed set whose boundary consists of finitely many line
segments and circle arcs. Let, f: U — C be a continuous function, and let v € SLy(R).

Then drd v d
xdy xdy
f z :/ f 4 )

/zeU () y? vlU ( ) y?

where we write z = x + 1y.

Proof. We view H as an open subset of R? with coordinates (z,y) and v = (‘g 3) as a

differentiable map ‘H — H. Write

(2, y) =Ry(x+iy)  and  (z,y) = Sy(x +iy).

The Jacobian matrix of 7 at a point z = z 4 1y is

Oy Oy

— X
J ( Y1 72) *

0y Oy

Since 7 is holomorphic, it satisfies the Cauchy-Riemann equations

Op _On Op_ _on
oy Ox’  Ox oy’

and we have

, oy Oy
') = 55 +igy

5= |(% 2@12)\ R

Hence

On the other hand we have

a(cz +d) — claz +b)
(cz 4 d)?

= e (59)

since 3(gz) = ﬁ This yields

drdy dx dy
[ O%E = [ 10 1
dx dy

_ / LT
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Remark 3.3.2. What we have shown that the differential 2-form % is SLy(R)-
invariant.

Notation. Let I' < SLy(Z) be a finite index subgroup, let R be a set of coset repres-
entatives for I'\ PSLy(Z) and let D be the fundamental domain as defined in theorem
1.2.2. We then denote the union {J cpvD by Dr.

Lemma 3.3.3. Let F : H — C be a continuous function with is I'-invariant, i.e.

F(v.2) = F(z) Vyel,zeH.

dx dy
| re®
z€Drp y

does not depend on the coice of the system of coset representatives R.

Then the value of the integral

Proof. Immediate from Lemma 3.3.1. O]

Definition 3.3.4. We define the following regions around the cusps: For Y > 0, let
Uy ={z+iyeH: |z|<1/2,y>Y}.

Note 3.3.5. The fundamental domain Dr is the union of some compact set K C H and
the set
yUy{v.z|y € R, z € Uy}.

Lemma 3.3.6. Let F' be as in Lemma 3.3.3. Suppose that for all y € SLo(Z) there exist
real numbers c, > 0 and e, < 1 such that

|F(v.2)] <e¢y- (3(2) Vz with (z2) sufficiently large. (3.2)
Then the integral
dxd
/ F(z2) "2 (3.3)
ZEDF y

CONVETGES.

Proof. The restriction of the integral (3.3) to K clearly converges since K is compact. It
therefore remains to show that the integral converges on each of the sets yUy for v € R.

By Lemma 3.3.1, we have
dx dy dx dy
[ s [ raat
zevyU, Yy zeU, )

.. dxdy
< ¢y Yy
zeUy y

=c, / Y 2 dy.
y=Y

This converges since e, < 1 by assumption. O
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Note 3.3.7. Condition (3.2) is in particular satisfied if F' tends to 0 exponentially at
the cusps.

Proposition 3.3.8. Let I' < SLy(Z) be a finite index subgroup, k > 1 and f,g € M(T).
Define F: H — C by

F(z) = f(2)9(2)(3(2))".
Then F' is I'-invariant. If at least one of f and g vanishes at each cusp then F' tends
exponentially to 0 at each cusp and hence

/ F(z —i—zy)dxdy
Dr

CONVETGES.

_S()

Proof. F as defined is of weight 0 ['-invariant since f,g € My (') and (gz) = T E
Moreover, the decay at the cusps can easily be shown by considering the product of tte
g-expansions of f and g at the corresponding cusps: the product will be a function in ¢
without a constant term, so it certainly tends to 0 exponentially. It hence follows from
Lemma 3.3.6 that the integral converges. O]

Definition 3.3.9. Let I' < SLy(Z) be a congruence subgroup, k > 1 and f, g € My(I),
at least one of f and g vanishing at every cusp. Then we define the Petersson product
as

(f.9)r = f( )9(2)(S(2))"2da dy.

Note 3.3.10. The Petersson product is well-defined by Proposition 3.3.8.

Proposition 3.3.11. The Petersson inner product is a positive definite inner product
on the C-vector space Si(I'): it satisfies

1. a1 fi + azfa, 9) = a1 (f1,9) + ax(fo, 9) for all ay,ax € C, fo, fo,9 € Sp(T);
2. (f,9) =9, f);
3. (f, f) = 0 with equality if and only if f = 0.

We now want to show that the subspact of My (I") spanned by the Eisenstein series is
orthogonal to S(T').

Proposition 3.3.12. Let I' < SLy(Z) be a congruence subgroup, k > 3 and ¢ €
Cusps(I'). If k is odd, assume that T' is regqular at ¢ . Then (Gyr., f) = 0 for all

We will sketch the proof of the proposition. We need some preparatory lemmas:
Lemma 3.3.13. Let f € Sk(I'). Then there is C > 0 such that
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Proof. Assume first that I' = SLy(Z). Let f € Si(I'). Define F(z) = |f(2)|S(2)F/2. We
can check that g is SLo(Z)-invariant. So it is bounded on # if and only if it is bounded
on the funcamental domain D. But DN {z € C: |¥(z)| < R} is compact and F(z)| — 0
as 3(z) — oo since f is holomorphic at 0 and vanishes there, so | f(¢)| < C|q| for small
q and some C' > 0. But ¢ = €™ decreases faster than 3(z)"? increases.

The argument easily generalizes to general congruence subgroups. O

Proposition 3.3.14. Let f € Si(I"). Then there is M > 0 such that
an(f)] < Mns.

Proof. Let f € Si(T) and C, be a small circle around the origin described by e?i(*+%)
where y is fixed and 0 < x < 1. Since

Flan) g b= 4 an@yt + g1 + Gngagn + -

the residue theorem implies that

an(f) = L/ f(C])dq

271 C, qn—I—l

1
:/o f(x +1y)g, "dx.

2miz/h

Using Lemma 3.3.13 and using that ¢, = e with z = x + 7y, we get

' ¢ 2min/h i
|an(f)| S/ _yk/2 |6_ min/h(z+iy) dx
0

_ Cy—k/2€27ryn/h.

This expression holds for all y > 0, so in particular for y = %, we get
lan (f)] < Ce*nk/2.
Setting M = Ce®" finishes the proof. O

We can now prove Proposition 3.3.12.

Proof. It can easily be checked that (f,g)r = (f|x7, glx7)-1ry for all v € SLy(Z). So
we can assume that ¢ = oo without loss of generality. Let f € Si(T"). By definition we
have

<f7Gk,F,OO>T:/D f(2)< >, 1|k7(2)>(%(2))k2df€d9-
: YETELAD
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Now we can interchange integral and sum and afterwards apply lemma 3.3.1. This yields

(f,Grrecr =) / F(&) WUy (2))((2))**da dy

761"3’0\1" Dr

= > / (Flir ™ () 1()(S(2))2dz dy

~eLLA\D vDr

- > F(2)(S(2))"2dw dy

vergr 7P
— [ 1) dedy
L \H
This is well-defined since the integrand is T'} -invariant. So

(f, G} = / F(2)(S (=) 2da dy

IL\H

o . k—2
— %q@o flx +iy)y" “dxdy

0<z<h
o0
_ 2min(x+iy)/h, k—2
= a e dr dy.
ey 2 () y y
0<z<h n=1

Now since a,(f) = O(n*/?) by Proposition 3.3.14,

bey<oc Z ‘an(f)GZWin(x+iy)/hyk—2| dx dy < o0,
0<z<h n=1

so we can interchange the order of summation and integration. Thus

. k—2 _ k—2 2min(z+iy)/h
%@@of(x-l—zy)y dxdy—Zan(f) %@@Oy e dx dy

0<z<h n>0 0<az<h
[e%S) h
_ Z an(f)/ yk—2e—27ryn/hdy/ e2mm/hdx.
But foh e2rine/h g = % fol e?™n2dy = (. So the product we started with was 0. O]

Remark 3.3.15. If ¢ and d are distinct cusps then (Gy ., Gir.q) is well-defined, but it
is not generally 0. Moreover, for k& > 3 can be shown that & (I"), the subspace of M(I")
spanned by the Gy r.’s, is exactly given by the set

{f € Mi(T'): (f,g) =0 for all g € Sp(T")}.

In an abuse of notation we say & (I') is "the orthogonal complement of Si(I")”, which is
not correct since (-, -) is not well-defined on all M (I"). However (-,-) certainly defines
a positive definite innder product on Si(I'). In particular we can take the above set as
the definition of & (I') for k =1,2.

61



3.4 Hecke operators and the Petersson product

Definition 3.4.1. Let V' be a finite-dimensional C-vector space equipped with a positive
definite inner product ( , ), and let T: V' — V be a linear operator. The adjoint of
T is the linear operator 7*: V — V such that (T'z,y) = (x,T*y) for all x,y € V.

Definition 3.4.2. For I' a congruence subgroup, we define

dz d
covol(T") :/ ny.
Dr Y

Lemma 3.4.3. Let I" be a congruence subgroup.

dx dy dx dy
;= dr- 2
pDr Y D Y

hwereD is the fundamental domain for SLo(Z) and dr is the projective index of T.

1. We have

2. Let g € GL3(Q) such that g~'T'g C SLy(Z). Then

/ dxdy_/ dx dy
D y? Dr y? ’

g~ 1rg

and T and g~'T'g have the same index in SLy(Z).
Proof. Exercise. O

Definition 3.4.4. We normalize the Petersson inner product as follows: for I' a con-
gruence subgroup, we let

1

(f90r = covol(T)

i F(2)9(2)(S(2))2da dy,

Lemma 3.4.5. If IV C T are congruence subgroups and f,g € Sk(I'), then

<fug>r ::<fug>F“
Proof. O]

The aim of this section is to compute the adjoints of Hecke operators with respect to
the Petersson inner product. More precisely, we want to prove the following theorem:

Theorem 3.4.6. Let fi, fo € My(T) for some I' < SLy(Z) of finite index such that at
least one of f1, fy is a cusp form and let g € GL3 (Q). Then

(Ails[Tglls fo)r = (i fals[Tg'T])y

where ¢’ = det(g) - g~'. So T'g'T is the adjoint of T'gT.
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To prove this theorem we first need several technical results:

Proposition 3.4.7. Let T' < SLy(Z) be a congruence subgroup and let g € GL3 (Q) such
that g7'T'q C SLy(Z). Then for any fi € My(T') and fo € My, (g7 'Tg) we have

<f1|kg7f2>g_1fg = <f17f2|k9/>1‘7

1

where ¢ = det(g) - g~ as above and fi, fa are such that both sides are defined.

Exercise 3.4.8. If one of these sides is defined, so is the other.

Proof. An explicit calculation shows that for any compact U C Dy-1r,

/(fllkg)(Z)m(%(Z))'“_gdwdy:/ Fi(2)(faleg) (2)(S(2))*2dx dy.
U qgU

If we let U grow into a fundamental domain for ¢g7'I'g then gU grows into a fundamental
domain for I' and we are done. O

Lemma 3.4.9. For any ' < SLy(Z) of finite index and any g € GL3 (Q) we have
[F:Fﬂg_lfg} = [F:Fﬂgl"g_l} :

Moreover, if r is this common value, then there are elements ay, ..., a, € GL3 (Q) such

that . .
Tgl = [[Ta; = [J aul.
=1 =1

Proof. We first check the index. Let IV = T'Ngl'g~t. Then ¢ 'I"g =T N g 'T'g. Since
these are both contained in SLy(Z), we deduce from Lemma 3.4.3 that

[SLo(Z) : T'] = [SLy(Z) : g 'T"g].

Since indices are multiplicative, this proves the first part.
There hence exist vy,...,7, and 7y, ..., 7, such that

I =]J[Cngrg)y =T Nng 'To)
We hence deduce from Corollary 3.1.6 that

Ll = [ T,
Tg~'T=][rg'5" = Tgl' = [ ] 49T (3.4)

Claim. For all 1,< 1,5 <r, we have

Lgyi N A9 # 0.
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Proof of claim. Suppose that I'g7y; N 7;9I" = () for some 7, j. Then
Tgvi € [ AwoT-
k#j
Multiplying on the left by I' implies that
gl C [ Aol
oy

which contradicts (3.4).
For all 1 <4 < r, choose «; € I'gy; N7;9I". Then we have

I'gl' = ﬂfai = ]i[ozif.
i=1

i=1

We are now able to prove Theorem 3.4.6.

Proof of Theorem 3.4.6. As in Lemma 3.4.9 let oy, ..., a, € GL; (Q) be such that

I'gl' = ]:[Fozi = ]:[oziF.
i=1 i=1

Inverting yields Tg~'T' = []/_, Ta; . Since I' C SLy(Z), we have det(a;) = det(g) for
all 7. Hence .
TgT =[] Te,
i=1
where ¢’ = det(g)g~! and o) = det(a;)a; . Now let I’ =T'Ng~'T'g. Then

r

<f1|k[rgﬂa f2>F = <f1|k[rgr], f2>F’ = Z<f1|k;0li, fz)r/-

i=1
Note that I' N a; 'Ta; = I for all 4. So the summands are in My (I"). Furthermore

T

(file[Cgl], fo)r = Z<f1’k0ﬁ, fa)r

i=1

= (i, folr})grrg—

=1

= (f1, Llk[TgT]) grvg
=1

= <}1> foleLg'Tr.
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Corollary 3.4.10. The operators Ugl for g € GL3(Q) preserve £,(T') € My(T).

Proof. The operator I'¢g'T" preserves the cusp forms. Using theorem 3.4.6 we can pass to
the orthogonal complement: We have for any f; € &/(I') and for any fo € Si(I") that

(file[TgT], fo)r = (f1, fol[Tg'T]r =0

since fo|r[I'¢g'T] is in Sk(I"). Thus f1|x[I"gI'] is orthogonal to every cusp form and therefore
is in & (T). O

Definition 3.4.11. In the setting of Definition 3.4.1, the operator T is normal if it
commutes with its adjoint T%: T'T* = T*T.

Theorem 3.4.12. Let N > 1, I' = I'y(N), and consider the C-vector space Si(I'). Let
p be a prime not dividing N. Then

py=® =0 and T;=(p) T,

Proof. Recall that (p) = I'al', where « is any matrix a = (¢5) € To(N). By Theorem
3.4.6, we have
(p)"=Ta™'T

which is clearly equal to (p)~! = (p~').

Now T, = I'al’, where v = (§), with adjoint 77 = I'a’T’ with o/ = (59). In the

proof of Proposition 3.2.2, we saw that

(B =) G
where a,b satisfy ap — Nb = 1. Now (’]’\‘,“1’) e I', and (&2) € T'g(N) normalizes T.
Hence

Remark 3.4.13. More generally, we have

() £, 9)r = (f. ()" 9)r
<Tpf7 9>F = <f7 <p>_1 T, g>r

for all f,g € My(T"), at least one cuspidal.

Corollary 3.4.14. For nt N, the Hecke operators (n) and T,, are normal.
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We now recall the following result from linear algebra:

Theorem 3.4.15 (Spectral theorem). Let T' be a normal operator on a finite dimen-
sional C-vector space V.. Then V' has an orthogonal basis of T'-eigenvectors.

Corollary 3.4.16. Let N > 1. Then the space Sg(I't(N)) has an orthonormal basis
consisting of eigenforms for the operators (n) and T,, n coprime to N.

Proof. Clear by applying the spectral theorem to Si(I';(/N)), using Corollary and the
fact that the Hecke operators commute.! O

Remark 3.4.17. Considering I'o(N) instead of I';(N) the same logic applies, but as
the (d) operators are trivial in this case the 7}, are self-adjoint. Hence their eigenvalues
are real. Therefore Si(I'¢(/V) has a basis of modular forms with real eigenvalues for the
T,’s. In particular this applies to I' = SLy(Z).

The following example shows that the T},, p not dividing N, can indeed fail to be
diagonalisable.

Example 3.4.18. Let f € Si(I'y(N)) and p prime not dividing N. Assume f is an
eigenvector for 7,,. Now look at the space Si(I';(Np)). It contains fi(z) := f(z) and

f2(2) :== f(pz). By comparing formulae for the T)-action on the g-expansions (Theorem
3.2.20), which are not the same at N and Np, we find that

T,fi=M1—=0""'Xx(0)f2, Tpfo= 11

if f is a T),-eigenform with eigenvalue A\ and f has character y. More generally at level
p’ N, the space spanned by f(2), f(pz), ..., f(p’z) is T,-stable and the matrix of T}, looks
like

A 100 --- 0
—p"x(p) 0 1 0 0
0 00 1 0
0 000 1
0 000 0

Exercise 3.4.19. This matrix is not diagonalisable for j > 3, independent of A\, y and
k.

So there is an obstruction to diagonalise 7, for p dividing /N coming from forms of
small level at p.

LA family of commuting normal operators is simultaneously diagonalisable.
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3.5 Old and new modular forms

Let N > 1, and let p be a prime dividing N. Recall that if f(z) € Sk(I'1(N/p)), then
f(pz) € Sp(T1(N)).

Definition 3.5.1. Let N > 1, and let p be a prime dividing N.

1. Define
Se(T1(N))p-ora = i1 (Sk(T'1(N/p))) + 42 (Sk(T'1(N/p))) ,

where

i1p : Sk(T'1(N/p)) = Sk(T'(N))
is the natural inclusion and
i2p : Sp(T'1(N/p)) = Sk(T'1(N))
maps f(z) to f(pz). (Note that this sum is not generally a direct sum.)

2. The space of all old modular forms is defined to be y

Sk(T1(N))oa = Z Sk(T1(N))peola-

p prime, p|N

3. Define Si(I'1(N))pnew as the orthogonal complement of Si(I'1(N))p-o1a, and define
the space of new forms

Sk<F1 (N))new = ﬂ Sk<F1(N))p-neW'

p prime, p|N

Remark 3.5.2. The space Si(I'1(IV))new is precisely the orthogonal complement of
Sk(T1(N))ola-

Proposition 3.5.3. The subspaces of Sk(I'1(N)) in Definition 3.5.1 are stable under
the operators T,, for alln >1 and (d) for all d € (Z/NZ)*.

We first recall the formulae from Theorem 3.2.20: If f = 3" . an,q" € My(I'1(N)),
then -

Ty.f =U,.f if ¢|N (3.5)
Tpf =Unf + 057 0).f  if 04N
Here,
Uﬁ'f = Z anfqn> and ‘/ff = Zanqné'
Note 3.5.4.

1. For ¢ # p, V,, commutes with U, and V.

67



2. We have Uy oV, = id. (Exercise: what is V; o U,?)

Proof. 1t sufficies to show that the old subspaces are stable under the operators (d), T,
and their adjoints. By Theorem 3.4.12, the adjoints of T, for p not dividing N and of (d)
for all d € (Z/NZ)* are in the subalgebra 7 (I';(/N)), so we don’t need to worry about
them.

Firstly consider T, for ¢ not dividing N. Then the action of 7, on S(I';(N)) and
Sk(I'1(N/p)) is given by the formulae (3.6). Hence

ip(Tef) =Ti(in,f)  and  dgp(Tof) = Ti(iz,f)

for all f € Sk(I'1(IN/p)), so Ty preserves Si(I'1(N))pona for all p dividing V.
Now consider (d) for some d € (Z/NZ)*. Choose some v = (¢ %) € ['((N). Then
v € T'o(N/p) also represents (d) € R(I';(N/p)). As functions on H we clearly have

i1p((d) f) = Ad) | = flev = (ip )y = {d) (i1 ).

Furthermore

@ tizg) =) (510 (5 ) = (e (5 9) )0 (e 0)
Note that
(5 3) (e )= (o ) 53

@ o) =2 (1 (e, ) 16 Y)
=@l (5 )

=iz, ((d) f)-

We deduce that (d) stabilizes Si(I'1(N))p-old-
So it remains to show that Sy(I'1(N))pola is preserved under the action of T, and T}
for ¢ dividing IN. We first consider 7j:

Hence

1. If ¢ divides N but ¢ # p, then T} is given by the same formula (3.5) at level N
and at level N/p. So we have

Tgouny=t1p0Tg, Tyoigy =izpoTy
as in the case of ¢ not dividing N.

2. If p? is not dividing N (so p does not divide N/p), then for f € Sp(I'1(N/p)) we
haveT, (i1, f) = Up(i1,f) by (3.5). On the other hand, using (3.6), we have

in(Tpf) = Up(inf) + pk_l () Vi}(f)
= Up(irpf) + pk71i2,p<<p> f);
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Hence
Tp(il,pf) = Z'1,10<Tzaf> - pkililp«p) f) € Sk(rl (N))p-old'
On the other hand we have

Tp(i2,pf) = Up(vp(f)) = Z'1,17(f)'
Hence T, preserves Sy (T'1(N)),.oa if p? does not divide N.

3. If p? divides N, then formula (3.5) applies for T, both at level N and at level N/p.
So we have

T,041, =101, and T,0i09, =Uy,oV, =1;,.

We hence deduce that T}, preserves Si(I'y(N)),oa for all primes p, g.

Therefore we are left with checking that the adjoints 77, for ¢ dividing N, preserve
old forms (equivalently, that the space of new forms is preserved by T,).

Let wy = (5 o). This normalises I'1(N), so I'1(N)wyT'1(N) is a single left or right
coset (as for (d)’s), and defines an element of R(I'y(/V)). We check that

T = {1}(1\[) (g (1)) Fl(N)] = wyT,wy!

0 -1\ /1 0\ /0 —1\' (p o0
N 0 0 g/ \N 0 - \0 1)~
We will show that wy preserves the p-old subspace for all primes p dividing N, from

which it follows that 7T preserves the p-new subspace for all primes p, ¢ dividing N.
As before, we compare wy with the corresponding operator at level N/p, namely wyp,.

as

wy (i, f)(2) = N HN2) T f (_Niz)

o E)kl (ﬁ z)k B
! (p » ) S pz

N J/

-~

=wnp(f)(p2)
= p" gy (wnypf)(2).
On the other hand

wnling)(2) = NV ()

()6 ()

(. /

—wnp()(2)
= p_lil,p(wN/pf) (Z>
This finishes the proof. O
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Exercise 3.5.5. Suppose that p’ | N, but p’*!' { N. Then

Sk(T1N))p—ota = i1 (Sk(T1(N/P))) + i (Se(T1(N/p))) + -+ + i (Sk(T1(N/p7)))

where 4, , sends f(z) to f(p"z).

Definition 3.5.6. The operator I'y(N)wnT'1(N) € R(I'1(V)) is called the the Atkin-
Lehner involution.

Remarks 3.5.7. (i) We have wi = —wy. So w} preserves old subspaces and wy
preserves new ones.

(ii) wy does not preserve character subspaces: wy maps Sg(I'1(N), x) to Sk(I'1(N),X).
Moreover, note that y = y .

Proposition 3.5.8. Let x be a primitive character mod N. Then

Sk(FI(N>) X) g Sk(F1<N))new'
Proof. The action of the (d)’s on Si(I'1(N/p)), p dividing N, must factor through
(Z/(N/p)Z)*. The maps i1, and iy, commute with the (d)’s, so any (d) eigenvector in

an old subspace must have a character factoring through Z/(N/p)Z for some p. Thus it
will not be primitive. O

Warning. The converse is not true: in general, it is not possible to tell from its
character whether a modular form is new.

Proposition 3.5.9 (An alternative definition of the new subspace). Forp being a prime
dividing N, and assume® that N/p & {1,2}. Define maps

0
trip: M(T1(N)) = Me(Ty (/). s 5 3 Flei
trap: MilT1(N)) = M1 (N/p), [ (wy, o trigowy ) (f),

where 6 = [['1(N/p) : T'1(N)] and v, ...,7s such that I'y(N/p) = Hle ['y(N)v;. Then
try, 0ty = id, tre, 0le, = id and we have

Sk(C1(N))p-new = ker(try ) Nker(try,).

Note that we can see J try, as the element [I';(N) - I';(N/p)] in R(I'1(N),T'1(N/p))
(c.f. Example 3.1.13 (4)).

2This proof needs minor modifications in the case of N/p being 1 or 2 (why?).
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Proof. We have for f € Sp(I't(N/p)) and g € Sp(I'1(IV)) that

<i1,p(f)? g>F1(N) = <f7 trl,p(g»l“l(N/P)’

so the kernel of tr; , is the orthogonal complement of the image of 4, ,. Similarly

(p~"wy (i p(wnypf))s 9T ()
Y (wiy (i (wnyp ), 9)rs vy
Z.l,p(wN/pf)v ng>F1(N)

A
A
-1 (wN/pf, trl,p(ng)>F1(N/p)
—
A

(i2p(f), 9)rs ()

1

(S w&}p(tfl,p(ng)DFl(N/p)

p
p
p
p
P (S trap(9))ry (vym)-

2

So the kernel of try,, is the orthogonal complement of the image of i3 . m

Remark 3.5.10. It is an amusing fact, that this definition of "new” and ”old” works
also for Eisenstein series, but there is an Eisenstein series of level 6 which is new and
old simultaneously.

Definition 3.5.11. A normalised eigenform in S (I'1 (IV) ) new is called a primitive form.
Example 3.5.12. A is a primitive form.
Theorem 3.5.13. [Strong Multiplicity One/

(a) For any N > 1, Si(I't(N))new has a basis of primitive forms.

(b) If f € Sp(T1(N))pew is an eigenvector for all T, with ¢ not dividing N, then f is a

scalar multiple of a primitive form.

(c) If f € Sp(I'1(N)) and g € Sk(I'1(M)) are primitive forms with a,(f) = a.(g) for
all but finitely many primes £, then N = M and f = g.

We are not going to proof this theorem in the lecture. There is a nearly (but not
quite) complete proof in Diamond & Shuman and a different one in Miyake. For a full
proof see the paper of Atkin & Lehner, 1970.

Proposition 3.5.14. Let M divide N, and let f € Si(I'y(M)) be a primitive form.
Define Sp(T'1(N))[f] as the subspace of Sk(I'1(N)) spanned by all modular forms f(dz)
for some d dividing N/M. Then

Sk(I(N)) = @ Sk(T(N))[f]-

f primitive of
level dividing N

Moreover, a form g € Si(I'1(N)) is an eigenvector for Ty for all ¢ not dividing N if and
only if it lies in one of the subspaces Si(I'1(N))[f].
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Proof. We have seen that Si(I';(IV))new has a basis of primitive forms. By induction on
the number of divisors of N, the subspaces Si(I'1(N))[f], f primitive of level dividing
N, span S(I'1(NV)).

Suppose the sum is not a direct sum. Then there is a nontrivial linear relation

> ciifildigz) =0

i\j
with scalars ¢; ;, primitive forms f; and factors d; ; dividing N/level(f;). We can suppose
without loss of generality that this relation has the least possible number of nonzero
¢ij's. Then all the f;’s such that ¢; ; # 0 must have the same 7; eigenvalue for all [ not
dividing N, since otherwise apllying 7; — A for some A would give a relation with fewer
terms. Hence all the f;’s with ¢;; # 0 for some j have some 7; eigenvalue for all [ not
dividing N and thus they are equal by the Strong Multiplicity One theorem. So any
linear relation between vectors in

S ST

f primitive of
level dividing N

comes from a relation in Si(I'y(V))[f] for a single f. Hence the sum is direct.
Note that this also shows that the vectors { f(dz): d dividing N/level(f)} are linearly
independent. So the set

{f(dz): f primitive of level N,d dividing N/level(f)}

is a basis. So it remains to show that any g € Si(I';(N)) being an eigenvector for all 77,
¢ not dividing N, is in Sg(I'1(N))[f] for some f. Suppose g is such an eigenvector for
all Ty, ¢ not dividing N. We can write g = >\, j;9; with g; € Sp(T'1(N))[f:] for some
fi. if Tyg = ag then

0= (Te = a)(g) = 3 milTs = a)(g:),

Since vectors in subspaces Si(I'1(N))[f] for distinct f’s are linearly independent, all the
vectors (T; — «)(g;) are zero. Since this holds for all ¢ not dividing N, Theorem 3.5.13
implies there is at most one nonzero p;, so g = p;g; € Sk(I'1(N))[fi]. This finishes the
proof. O]

3.6 [L-functions

3.6.1 Basic definitions

Definition 3.6.1. Let f € My(I'1(/N)) be a modular form with g-expansion f =
ano a,q". The L-function of f is the function in one complex variable s given by

L(f,s)= io: an,n”°.
n=0
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Proposition 3.6.2.
1. If f € Sp(T'1(N)), then L(f,s) converges absolutely for all s with R(s) > k/2 + 1.

2. If f € My(I'y(N)) is not a cusp form, then L(f,s) converges absolutely for all s
with R(s) > k.

Proof. (1) By Proposition 3.3.14, we know that |a,(f)| < Mn*? for some M > 0.
Hence, if R(s) > £ + 1, then

g a,n”*

n>1

< Man_%(s) < 00.

n>1

(2) For f € My(T';(N)), one can show that there exists M > 0 such that |a,(f)| <
MnF for all n. The proof of the statement is analogous. O

The L-functions of normalized eigenforms have a remarkable decomposition, the so-
called Euler product expansion. In fact, having this property characterizes normalized
eigenforms, as the following result shows:

Proposition 3.6.3. Let f € My(I'1(N), x) be a modular form with q-expansion -, anq".
Then f is a normalized eigenform if and only if L(f,s) has an Euler product expansion

Lfs) =TT (1 =ap(fr "+ xot )

p prime
Proof. By Proposition 3.2.34, we need to show that properties
ia(f)=1
i amn(f) = am(f)a,(f) for all m,n comprime;
il ayr (f) = ap(fag—1(f) — p" " x(p)ay—2(f) for all primes p and all r > 2.

are equivalent to L(f,s) having an Euler product. Suppose first that the conditions are
satisfied. Multiplying (iii) by " and summing over all r > 2 we see that (ii) is equivalent
to

S ap (At =ap(HtY ap (N = P X 0D ap ()t

r=2 r=1

& ( apr(f)tr> (1= ap(N)t+ x()P"?) = ar(f) + ap(N)E(1 = as (f)).
r>0
Since a1(f) = 1 by assumption, we get - by substituting ¢ = p~* - the equality

1

Ny (= (1= (A~ +xp)p %) 7" (37)
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Conversely, if this equality holds, then letting s — oo we get a;(f) = 1, and the other
implications can also be reversed to show that (3.7) is equivalent to conditions (i) and

(iii).

The Fundamental Theorem of Arithmetic implies that if ¢ is any function of prime

powers, then
19 =>_ 1190

p r=0 n=1p||n

Using this fact, it is easy to see that (3.7) and condition (ii) are equivalent to the
existence of the Euler product. O

74



